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Quantitative phase-field modeling of dendritic growth in two and three dimensions

Alain Karma and Wouter-Jan Rappel
Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University,

Boston, Massachusetts 02115
~Received 10 June 1997!

We report the results of quantitative phase-field simulations of the dendritic crystallization of a pure melt in
two and three dimensions. These simulations exploit a recently developed thin-interface limit of the phase-field
model@A. Karma and W.-J. Rappel, Phys. Rev. E53, R3017~1996!#, which is given here a detailed exposition.
This limit makes it possible to perform efficient computations with a smaller ratio of capillary length to
interface thickness and with an arbitrary interface kinetic coefficient. Simulations in one and two dimensions
are first carried out to test the accuracy of phase-field computations performed within this limit. Dendrite tip
velocities and tip shapes are found to be in excellent quantitative agreement with exact numerical benchmarks
of solvability theory obtained by a boundary integral method, both with and without interface kinetics. Simu-
lations in three dimensions exploit, in addition to the asymptotics, a methodology to calculate grid corrections
due to the surface tension and kinetic anisotropies. They are used to test basic aspects of dendritic growth
theory that pertain to the selection of the operating state of the tip and to the three-dimensional morphology of
needle crystals without sidebranches. For small crystalline anisotropy, simulated values ofs* are slightly
larger than solvability theory predictions computed by the boundary integral method assuming an axisymmet-
ric shape, and agree relatively well with experiments for succinonitrile given the uncertainty in the measured
anisotropy. In contrast, for large anisotropy, simulateds* values are significantly larger than the predicted
values. This disagreement, however, does not signal a breakdown of solvability theory. It is consistent with the
finding that the amplitude of the cos4f mode, which measures the departure of the tip morphology from a
shape of revolution, increases with anisotropy. This departure can therefore influence the tip selection in a way
that is not accurately captured by the axisymmetric approximation for large anisotropy. Finally, the tail shape
at a distance behind the tip that is large compared to the diffusion length is described by a linear lawr;z with
a slopedr/dz that is nearly equal to the ratio of the two-dimensional and three-dimensional steady-state tip
velocities. Furthermore, the evolution of the cross section of a three-dimensional needle crystal with increasing
distance behind the tip is nearly identical to the evolution of a two-dimensional growth shape in time, in accord
with the current theory of the three-dimensional needle crystal shape.@S1063-651X~98!09201-0#

PACS number~s!: 68.70.1w
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I. INTRODUCTION AND SUMMARY

The phase-field approach is rapidly emerging as a met
of choice for simulating interfacial pattern formation ph
nomena in solidification and other systems@1–23#. The
widely recognized appeal of this approach is to avoid
explicit tracking of macroscopically sharp phase boundar
This makes it better suited than more conventional fro
tracking methods@24–27# to simulate time-dependent free
boundary problems in three dimensions~3D! or when com-
plex geometries are involved. Tracking is avoided
introducing an order parameter, or phase fieldc, which var-
ies smoothly from one value in the liquid to another value
the solid across a spatially diffuse interface region of thi
nessW. This field naturally distinguishes the solid and liqu
phases and converts the problem of simulating the adva
of a sharp boundary to that of solving a stiff system of par
differential equations that govern the evolution of the ph
and diffusion fields.

The phase-field method is rooted in continuum models
phase transitions that have appeared in the literature in v
ous contexts@28–30#. However, the introduction of the
method—specifically as a computational tool to mod
solidification—can be traced back to an unpublished der
tion by Langer@31#, who recast model C of Halperin, Ho
571063-651X/98/57~4!/4323~27!/$15.00
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henberg, and Ma@30# of dynamic critical phenomena into
model describing the crystallization of a pure melt. Th
model was implemented numerically by Fix@2#. Langer’s
derivation was published later@1#. Collins and Levine@3#
have also written down independently similar phase-fi
equations and analyzed one-dimensional steady states. S
then, the original model has been modified and reformula
by various authors to address issues of thermodynamic
consistency@4,5# and have been substantially extended
model the solidification of binary@6–8# and eutectic@9–11#
alloys. In addition, more extensive simulations have be
carried out. Much of the numerical work to date has focus
on the dendritic solidification of a pure melt@12–23# that
provides a nontrivial computational test case for the pha
field method. The basic equations for this case are descr
in Sec. II. In the simplest situation where the surface ene
is isotropic, they take the simple form

t] tc5W2¹2c2
]F~c,lu!

]c
, ~1!

] tu5D¹2u1] th~c!/2, ~2!

whereF(c,lu)[ f (c)1lg(c)u is a function that has the
form of a double-well potential where the relative height
4323 © 1998 The American Physical Society
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4324 57ALAIN KARMA AND WOUTER-JAN RAPPEL
the two minima is temperature dependent,h(c) is a function
defined in the next section that describes the generatio
latent heat and will be specified below,u[(T
2TM)/(L/cp) denotes the dimensionless temperature fie
W is the interface thickness~on the order of angstroms!, t is
the characteristic time of attachment of atoms at the interf
(;10213 sec for metallic systems!, andl is a dimensionless
parameter that controls the strength of the coupling betw
the phase and diffusion fields and is typically of order uni
Here TM is the melting temperature,L is the latent heat of
melting,cp is the specific heat at constant pressure, andD is
the thermal diffusivity. It is commonly accepted that the
equations only represent a phenomenological descriptio
the underlying microscopic physics of the solid-liquid inte
face. Therefore they only take on a quantitative meaning
the so-called sharp-interface limit where the phase-fi
equations reduce to the standard free-boundary problem

] tu5D¹2u, ~3!

V5D~]nuu22]nuu1!, ~4!

ui52d0 /R2bV, ~5!

where microscopic details of the interface region beco
unimportant. Here,V is the local normal velocity of the in
terface, d05g0TMcp /L2 is the capillary length,R is the
principal radius of curvature of the boundary, andb is the
kinetic coefficient. In this limit, Langer@1#, and then Cagi-
nalp @32# using a more formal asymptotic analysis, have d
rived the expressions

d05a1

W

l
, ~6!

b[b05a1

t

lW
, ~7!

which relate the basic microscopic parameters of the ph
field model to the capillary lengthd0 and the kinetic coeffi-
cient b, which are both measurable quantities. In these
pressions,a1 is a positive constant of order unity tha
depends on the details of the assumed form of free en
F(c,lu) and is unimportant. These expressions have b
extended by Kobayashi@12# and McFaddenet al. @18# to
incorporate crystalline anisotropy, and have provided so
the theoretical basis to relate phase-field computations to
free-boundary problem. Note that Eqs.~6! and ~7! have a
simple dimensional interpretation. The Gibbs-Thomson c
dition implies thatd0 and b have dimension of length an
inverse velocity, respectively. Furthermore, since only
product lu appears in the phase-field equations,ui must
scale inversely proportionally withl. It then follows thatd0
andb must scale dimensionally asW/l andt/Wl, respec-
tively. Also, Eqs.~6! and~7! imply thatd0 andb only fix the
ratio W/l andt/Wl, respectively, but notW andt indepen-
dently. Hence, convergence of phase-field computations
only be achieved by decreasingW;l and t;l2 until the
results become independent of interface thickness; tha
decreasingW, t, and l while keepingd0 and b fixed as
defined by Eqs.~6! and ~7!.
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The first large scale phase-field simulations of Kobaya
@13# produced dendritic structures that resemble qualitativ
those seen in experiment. More recent computations
Wheeleret al. @14# and Wang and Sekerka@17# have focused
on testing quantitatively the convergence of the phase-fi
method. These studies have highlighted a serious limita
of the phase-field approach. Namely, in practiceW, and
hence the grid spacingDx that scales proportionally toW,
needs to be chosen quite small compared to the scale o
dendrite pattern to converge to a reliable quantitative so
tion of the sharp-interface equations. For this reason, c
putations to date, which can be considered to be reason
independent of computational parameters, have been
stricted to a regime of dimensionless undercoolingD[(TM
2T`)/(L/cp) of order unity @17#, where T` is the initial
temperature of the melt. In this regime, the interfacial und
cooling ui is dominated by interface kinetics~i.e., bV
@d0 /R). Simulations at smaller undercooling seem to e
hibit a dependence on interface thickness@14#. For this rea-
son, adaptive meshing@33–35# is actively being pursued to
try to overcome the stiffness associated with the diffuse
terface region.

This stringent computational limitation of the phase fie
can be understood@19# to result from the combination of the
constraint on the ratioW/d0 imposed by the assumption
made in deriving Eqs.~6! and~7!, and the fact that the com
putation time to simulate a dendrite structure diverges
(W/d0)2(21d) in d dimensions. The constraint onW/d0
comes from the fact that Eqs.~6! and ~7! are only strictly
valid in the asymptotic limit of vanishing interface thicknes
Mathematically, this limit corresponds to lettingl→0 @32#
with W5ld0 /a1 andt5l2bd0 /a1

2. Thus, in this limit,u is
constant across the spatially diffuse interface region, si
W→0 with respect to the macroscale of the diffusion fie
On purely dimensional grounds, the magnitude of the va
tion of u across the interface scales asdu;WV/D, sinceu
varies locally on a scale;D/V in the direction normal to the
interface, whereV is the local normal velocity of the inter
face. Therefore neglecting this variation is equivalent to
suming thatdu!uui u, or WV/D!bV, which is easily seen to
yield the constraint

W

d0
!

Dt

W2
~8!

using Eqs.~6! and~7!. The scaling of the computation time
in turn, comes from the fact that the number of floating po
operations,NFP, necessary to simulate a dendrite is appro
mately the product of the total number of grid points, whi
scales as (l /W)d, where l 5D/Vtip is the diffusion length
andVtip is the tip velocity, and the number of sweeps throu
the lattice necessary for the tip to reach a steady-state ve
ity, which scales asl 2/(Dt) since the time stepDt;t. Us-
ing the factD/Vtip;d0 /(Ds* P2) to estimatel , we obtain

NFP;FW2

DtG@s* P2#2~21d!F W

d0
G2~21d!

, ~9!

where P[r tipVtip/2D is the tip Pe´clet number, ands*
[2Dd0 /r tip

2 Vtip is the classic parameter characterizing t
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57 4325QUANTITATIVE PHASE-FIELD MODELING OF . . .
operating state of the dendrite tip. The first term in squ
brackets on the left-hand side of Eq.~9!, which also appears
in Eq. ~8!, is constrained by numerical stability to be of ord
unity if an explicit scheme is used to time step the diffusi
field. It can be made somewhat smaller if an implicit sche
is used instead. The second reflects the increase of the d
sion length with decreasingD and P, or decreasing anisot
ropy ands* . Finally, the last factor reflects the very rap
increase inNFP with decreasing interface thickness. Furthe
more, the Pe´clet number scales asP'D2/p in 2D andP'
2D/ ln(D) in 3D for D!1. These relations, combined wit
the estimate of Eq.~9! and the constraint of Eq.~8!, show
that quantitative computations at smallD are extremely
costly, and not really feasible with current supercomput
technology.

Recently, we have found that this limitation of the phas
field approach can be circumvented to a large degree by
thinking the way in which we analyze the sharp-interfa
interface limit of the phase-field equations@19–21#. This was
done by deriving a ‘‘thin-interface’’ limit of these equation
@19,20#, which is physically more realistic in that it assum
that the interface thickness is small compared to the me
cale of the diffusion field, but remains finite. This is in co
trast to the standard asymptotics leading to Eqs.~6! and~7!,
which assumes thatW→0 as emphasized above. A simila
type of finite W limit has been independently examined
Fife and Penrose@36#, albeit not for computational purpose
An analysis of this thin-interface limit, which is a more d
tailed version of our earlier derivation in@19#, is given in
Sec. III for both isotropic and anisotropic interfaces. An
ternate derivation, based on a higher-order analysis withl as
small parameter, is given in Appendix A for completene
These analyses yield the same expression ford0 as Eq.~6!,
but a modified expression for the kinetic coefficient given
@19#

b5a1F t

lW
2a2

W

D G , ~10!

where the second term on the right-hand side of Eq.~10!
originates from including the variation ofu across the inter-
face, anda2 is a positive constant of order unity that depen
on the details of the functional forms chosen f
f (c), g(c), andh(c). As seen earlier, this variation scale
asdu;WV/D, and therefore generates a correction tob that
scales as;W/D. This thin-interface limit has two obviou
computational advantages. First, it is not subject to the c
straint of Eq.~8! which is only present if one requires th
W/D!b0 in Eq. ~10!. Therefore it makes it possible to pe
form simulations with a largerW/d0 ratio, which reduces
dramatically the computation time according to Eq.~9!. One
main consequence of this reduction is to render simulati
at smallerD more directly accessible in 2D@19# and to make
quantitative 3D simulations@21# possible. Second, the ki
netic coefficient can be made to vanish by choosingl5l*
5tD/W2a2. Thus it makes it possible to simulate the case
negligible interface kinetics that is physically relevant at lo
undercooling for a large class of materials, especially me
lic systems with fast kinetics.

A couple of additional points concerning this limit a
worth emphasizing. First, one would have naively expec
e
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that taking into account the variation ofu in the interface
region would generate corrections to the Gibbs-Thom
condition that are proportional to the normal gradient ofu at
the boundary (]nuu6). While such corrections are indee
generally present in this limit, they turn out to vanish som
what miraculously if bothf (c) is chosen to be an even func
tion of c, which implies that the stationary profilec0(x) that
describes the planar interface at the melting temperatur
odd inx about the origin, andh(c) andg(c) in Eqs.~1! and
~2! are chosen to be odd functions ofc. It is precisely the
fact that these corrections can be made to vanish for th
special symmetries that renders this limit computationa
useful, i.e., in that it gives back a Gibbs-Thomson condit
of the standard form.

Second, there is a subtle physical point concerning
interpretation ofb in Eq. ~10!. This result implies that the
kinetic coefficient can become negative whent,la2W2/D.
This conclusion may appear at first sight thermodynamica
inconsistent because the solid-liquid interface cannot solid
with ui.0, which corresponds to an interface temperat
larger thanTM . There is, however, no inconsistency. In th
thin-interface limit,ui only represents the boundary cond
tion for u on the interface with respect to the macrosco
~outer! scale of the diffusion field. On the microscopic~in-
ner! scale of the interfaceu varies across the interface regio
and changes sign as it crosses this region whenb,0. There-
fore the actual value ofu at the interface position defined b
c50 is not the same asui in this limit. In contrast, in the
sharp-interface limit, both values ofu become identical and
b is always constrained to be positive. This point is exa
ined in more detail in Sec. IV where we analyze 1D grow
fronts for parameters of the phase field that correspond
both positive and negativeb.

The first goal of this paper is to demonstrate that accu
quantitative solutions of the free-boundary problem d
scribed by Eqs.~3!–~5! can be obtained by exploiting th
thin-interface limit described above. We examine the soli
fication of a planar interface in Sec. IV, which is the simple
test case where the steady-state velocity of the interfac
known analytically. We then present in Sec. V the results
simulations of dendritic growth in 2D with and without in
terface kinetics. In previous studies@17,33#, the convergence
of phase-field computations as a function of interface thi
ness has been checked by verifying that the Gibbs-Thom
condition is verified at the tip. In contrast, here, we test t
convergence by comparing the tip velocity and the interfa
shape to the numerical solution of the steady-state gro
equations, which provides a more direct test. These eq
tions are solved independently by the standard boundary
tegral method implementation of solvability theory@37–40#.

We find that we are able to model dendritic growth acc
rately down to values ofD around 0.25. A simulation at this
undercooling requires about 100 hours to reach a steady-
velocity on a workstation with a single processor with abo
a 50 Mflops ~megaflops! output. Much shorter times ar
needed for largerD and quantitative results can be obtain
with about 12 minutes of central processing unit~CPU! time
on the same processor atD50.55.

The second goal of this paper is to present 3D compu
tions that explore several fundamental aspects of steady-
dendritic growth theory. A methodology is developed in S
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4326 57ALAIN KARMA AND WOUTER-JAN RAPPEL
VI to incorporate quantitatively the effect of the lattice a
isotropy. It makes it possible to speed up the computati
even further by using a larger grid spacing and to reso
smaller anisotropies. The results of the computations, wh
have been briefly exposed elsewhere@21,42#, are presented
in detail in Sec. VII.

Theoretical progress over the last decade has led to
development of solvability theory to determine the operat
state of the dendrite tip@43–52#. In 2D, dynamical simula-
tions based on a sharp-interface@27# or a phase-field ap
proach@19,20# give a good quantitative agreement with th
theory. In 3D, however, this theory has remained more
certain. This is due in part to the fact that it has so far
mained too difficult to simulate reliably the free-bounda
problem of dendritic growth in 3D using a sharp-interfa
approach. This has prevented convincing demonstration
the global attractor of the growth dynamics is indeed
steady-state needle crystal predicted by solvability theory
addition, the predictions of this theory have remained the
selves approximate in 3D since they are based on assu
that the crystalline anisotropy and the tip shape are axis
metric ~i.e., are independent of the polar anglef in the plane
perpendicular to the dendrite growth axis! @49,50#. It has
therefore remained unclear to what degree the existing
agreement between theory and experiment@53–57# is due to
this approximation.

The present computations largely remove much of the
isting doubt about the validity of solvability theory in 3D
They show that the attractor of the growth dynamics is
underlying steady-state needle crystal predicted by
theory, up to quantitative differences ins* values that are
most likely due to the limitation of the axisymmetric a
proximation. In particular, we find that phase-field dendri
grow with a slightly highers* value than predicted by th
axisymmetric solvability theory for low anisotropy, and
significantly largers* value for large anisotropy where th
departure from a shape of revolution becomes more p
nounced. They improve the agreement between theory
experiment for succinonitrile~SCN!. A poor quantitative
agreement, however, is still found for pivalic acid~PVA!.
This disagreement could potentially be resolved in the fut
by including kinetic effects that are neglected here both
the 3D phase-field computations and in the 3D implemen
tion of solvability theory. We only demonstrate in Sec. V
that phase-field computations and solvability calculatio
that both incorporate interface kinetics give essentially id
tical results in 2D. We therefore expect an equally go
agreement in 3D.

With regard to the shape of the needle crystal, the sim
lation results show that the departure from a shape of re
lution is well described by a single cos4f mode in the tip
region. For the smallest anisotropy simulated heree4
;0.0066), the amplitude of this mode is of comparable m
nitude to the amplitude predicted by the linear solvabil
theory of Ben Amar and Brener@51#. One difference, how-
ever, is that we find that this amplitude increases withe4
whereas their theory predicts that it is independent ofe4.
Note that this is not an actual discrepancy since their the
is only strictly valid for asymptotically small values ofe4
that are presumably outside the range of our simulatio
This sensitive dependence of the tip morphology on ani
s
e
h

he
g

-
-

at
e
In
-

ing
-

is-

x-

e
is

s

o-
nd

e
n
-

s
-

d

-
o-

-

ry

s.
t-

ropy seen in our simulations should be experimentally ve
fiable by comparing the amplitude of this cos4f mode for
materials with different anisotropies.

In the dendrite tail, the shape of the needle crystal
found to be described by a linear lawr 5Bz for distances
behind the tip larger than the diffusion lengthD/V. More-
over, the slopeB is nearly equal to the ratio of the 2D an
3D dendrite tip velocities in good agreement with the theo
of Brener@52#, which is based on assuming that cross s
tions of 3D steady-state dendrites behave as two-dimensi
growth shapes. Actually, our simulations indicate that t
assumption, which is strictly only valid forB→0, remains
remarkably accurate even in a regime whereB is of order
unity.

II. PHASE-FIELD MODEL

The basic equations of the phase-field model are deriva
from a single Lyapounov functional when expressed in
variational form~VF! @1#

t~n!
]c

]t
52

dF
dc

, ~11!

]U

]t
5

D

bl
¹2

dF
dU

, ~12!

where

n[
“

W c

u“W cu
, ~13!

is the normal direction to the interface, and

F5E dVF @W~n!#2

2
u“W cu21 f ~c!1bl

u2

2 G ~14!

is a phenomenological free energy. Anisotropy in the surf
energy and in the kinetics is incorporated as in previo
models @12,14,17–21# via the functional dependence o
W(n) and t(n). The independent variables arec and the
dimensionless enthalpy

U~u,c!5u2
h~c!

2
. ~15!

Equations~11! and ~12! imply that

dF
dt

<0, ~16!

if there are no fluxes across the boundaries of the volu
whereF is defined, i.e., the dynamics drives the system
wards a minimum of free energy. To obtain a phase-fi
model that reduces to the desired free-boundary problem
is generally sufficient to require thatf (c) has the shape of a
double-well potential. The simplest choice forf (c) that has
been traditionally used is

f ~c!52
c2

2
1

c4

4
, ~17!
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with minima atc561 corresponding here to the solid (c
511) and liquid (c521) phases. In the way the equatio
have been written here, there is the additional requirem
that h(c) satisfy the condition

h~11!2h~21!

2
51 ~18!

to ensure that a unit amount of latent heat is produced at
interface with the temperature field normalized byL/c, for
f (c) defined by Eq.~17!. Note that Eqs.~11! and~12! reduce
to the form of Eqs.~1! and~2! if g(c) andh(c) are related
by

g~c!5
b

2
h~c!, ~19!

whereb is just a normalization constant that is introduc
such that Eq.~18! can always be satisfied for a given choi
of function g(c). The VF was introduced by Langer in h
adaptation of model C of Halperin, Hohenberg, and Ma,
solidification ~Eqs. 3.13–3.16 in Ref.@1#!. He wrote down
Eqs.~11! and ~12! specifically for the case whereg(c)5c,
in which case Eqs.~18! and ~19! require thath(c)5c and
b51. Since then, this formulation has been reinterpreted
Penrose and Fife@4# and Wanget al. @5# in terms of an
entropy functionalS meant to represent the total entropy
the system in some given volume. In their interpretation,
~16! becomes effectively replaced by the condition of po
tive entropy productiondS/dt>0, if no fluxes are present a
the boundaries of the volume. This entropy formulation
equivalent to the VF in that it yields the same phase-fi
equations@Eqs. ~11! and ~12! above#, and yields the same
thermodynamic consistency relation betweeng(c) andh(c)
as Eq.~19!.

It is important to stress that the constraint imposed by
~19! is not necessary to obtain phase-field equations tha
duce to the desired free-boundary problem in the limit o
thin interface. The isothermal variational formulation~IVF!
defined by the equations

t~n!
]c

]t
52

dFiso

dc
, ~20!

] tu5D¹2u1] th/2, ~21!

where

Fiso5E dVF @W~n!#2

2
u“W cu21 f ~c!1lg~c!uG , ~22!

conserves the total enthalpy and has the advantage th
allows one to choose the functionsg(c) andh(c) indepen-
dently. In this case, the phase-field equations are not der
from a single Lyapounov functional. They are only vari
tional isothermally in the trivial case whereu is taken to be
constant.

For computational purposes, we have used

g~c!5c22c3/31c5/5. ~23!
nt
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This form, which has been used previously@5,58#, has the
advantage that it keeps the minima of free energy at fi
valuesc561 independent of the value ofu. For h(c), we
have used either the form

hVF~c![15~c22c3/31c5/5!/8, ~24!

with b516/15, which correspond to the VF of the phas
field equations, or the form

hIVF~c![c ~25!

that is to be used in conjunction with the IVF of the equ
tions. Interestingly, as described in Sec. V, the latter fo
turns out to be computationally more efficient for simulati
dendritic growth because results converge faster as a f
tion of the grid spacingDx. It is therefore used exclusively
here for the 3D computations. One point is worth emphas
ing. The VF represents a thermodynamically more consis
description of a first-order phase transformation in that b
equations can be derived from a single free-energy fu
tional. It is therefore perhaps more appealing than the I
from a formal standpoint. Both formulations, however, r
duce to identical free-boundary problems in the limit that t
interface thickness is small. Hence, in our view, the relat
advantage of one formulation over the other needs to
evaluated purely on the basis of computational efficiency
accuracy. This is especially true since, as emphasized in
introduction, the phase-field model only takes on a quant
tive meaning in the limit where the microscopic details of t
interface region are irrelevant, and are only reflected in m
roscale parameters such asd0 andb.

III. ASYMPTOTICS

A. Isotropic interfacial energy and kinetics

For clarity of exposition, it is best to first derive the thin
interface limit in the case where the interfacial energy a
kinetics are independent of interface orientation. We th
consider how the results become modified when we incor
rate anisotropy in the surface energy and kinetics. We fi
rewrite the phase-field equations in dimensionless form
measuring length in units ofl c and time in units ofl c

2/D ,
wherel c is taken to be a fixed mesoscopic length scale t
sets the scale of the diffusion field and the solidification p
tern in a given simulation. All that we need to assume her
that the interface thickness is small compared to the ma
scale of the solidification pattern, not that it vanishes. Eq
tions ~1! and ~2! then become

ap2] tc5p2¹2c2 f c2lgcu, ~26!

] tu5¹2u1] th/2, ~27!

where we have defined the small parameterp[W/l c and
the dimensionless diffusivitya[Dt/W2. If we interpretVc
and l c;D/Vc as the characteristic interface velocity an
diffusion length in the problem, respectively, thenp is es-
sentially playing the role of an ‘‘interface Pe´clet number.’’
We now look for solutions of Eqs.~26! and~27! for p!1 in
an inner region which corresponds to the spatially diffu
interface region wherec varies rapidly, and an outer regio
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which corresponds to the bulk phases away from the in
face. We expand the inner solutions in powers ofp as

c5c01pc11p2c21•••, ~28!

u5u01pu11p2u21••• ~29!

and expand similarly the outer solutions asc̃5c̃01pc̃11

•••, and ũ5 ũ01p ũ11•••. Since in the outer regionc̃ is
constant in each phase~i.e., c̃561), ũ j simply obeys the
diffusion equation

] t ũ j5¹2ũ j ~30!

for all orders in an expansion inp. To look for the solutions
in the inner region, we start by rewriting the phase-fie
equations~26! and~27! in terms of a local orthogonal set o
curvilinear coordinates (j1 ,j2 ,j3) that moves with the in-
stantaneous normal velocity of the interface;j3 measures
length along the normal direction, andj1 and j2 measure
arclength along the two principal directions of the interfa
defined byc50. Furthermore, we define the inner variab
h5j3 /p and the dimensionless interface velocityv
5Vl c /D and curvaturek5l c(1/R111/R2), whereR1 and
R2 denote the two principal radii of curvature of the boun
ary, andV is the instantaneous normal interface veloci
Rewriting Eqs.~26! and ~27! in terms ofh and the above
quantities, we obtain

p~av1k!]hc1]h
2c2 f c2lgcu50, ~31!

p~v1k!]hu1]h
2u2pv]hh/250, ~32!

where we have neglected higher-order terms inp2 which
turn out to be unimportant at the end of the calculation. S
stituting Eqs.~28! and~29! into Eqs.~26! and~27!, we obtain
at leading order

]h
2c02 f c

02lgc
0u050, ~33!

]h
2u050, ~34!

where we have definedf c
0[ f c(c0) andgc

0[gc(c0). These
equations have the trivial solutions,u050, and

c052tanh~h/A2!, ~35!

for f c
052c01c0

3 . At first order inp, we obtain the system
of linear equations

Lc15lgc
0u12~av1k!]hc0 , ~36!

]hF]hu12
v
2

h0G50, ~37!

where we have defined the linear operator

L5]h
22 f cc

0 ~38!

and the functions, f cc
0 52113c0

2 , gc
0[gc(c0), and

h0[h(c0). We first note that Eq.~37! can be integrated
directly, which yields
r-

e

-
.

-

2
v
2

h01]hu15A, ~39!

whereA is a first integration constant. Now integrating on
more the above equation yields

u15ū11Ah1
v
2E0

h
dh8h0, ~40!

where ū1 is a second integration constant. The rest of
calculation proceeds in two steps. First, a relation betw
the two integration constants,ū1 and A, is derived using a
solvability condition for the existence of a nontrivial solutio
c1. Second,A and the boundary conditions foru on the two
sides of the boundary are derived by matching the soluti
in the inner and outer regions. The first step is carried out
first differentiating Eq.~33! with respect toh, which yields
L]hc050. Now, since this equation implies that]hc0 is a
homogeneous solution of Eq.~36!, and the linear operatorL
is self-adjoint, the right-hand side of Eq.~36! must be or-
thogonal to]hc0 for a solutionc1 to exist. This yields the
solvability condition

E
2`

1`

]hc0@lgc
0u12~va1k!]hc0#dh50. ~41!

Let us now consider the matching conditions. The condit
that the slopes of the two solutions match on the solid a
liquid side of the interface in the regions defined by 1!uhu
!p21 implies that

lim
h→6`

]hu15 lim
j3→06

]j3
ũ0[]j3

ũ0u6. ~42!

Applying the above matching condition to Eq.~39! and using
the fact that limh→6`h0(h)571, we obtain at once that

v
2

1]j3
ũ0u15A, ~43!

2
v
2

1]j3
ũ0u25A. ~44!

Eliminating A between these two equations we recover
once the usual heat conservation condition

v5]j3
ũ0u22]j3

ũ0u1. ~45!

To determine the conditions for the outer solution on the t
sides of the interface, we expandũ in the matching regions
in terms of the outer variablej3. This yields

ũ5ui
61]j3

ũ0u6j3 , ~46!

where we have defined the temperatures on both sides o
solid-liquid interface at orderp by ui

6[ limj3→06p ũ1, and
we have used the fact that the interface is isothermal at le
ing order since limj3→06 ũ05u050. In the matching regions
on both sides of the interface, the inner solution takes
form
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u5pS ū11
v
2

F6D1]j3
ũ0u6j3 , ~47!

where we have used Eqs.~43! and~44! to eliminateA in Eq.
~40! for each side (1) and (2) of the interface, respectively
and we have defined the constants

F65E
0

6`

dh~h061!. ~48!

Equating the right-hand side of Eqs.~46! and~47!, we obtain
the desired relations

ui
65pS ū11

v
2

F6D , ~49!

where the constantū1 is defined by the solvability condition
of Eq. ~41!. Two points are worth emphasizing. First, E
~41! implies thatui

6 includes a term that is proportional toA
and, hence, to the normal gradient of the diffusion fie
(]j3

ũ) at the boundary for an arbitrary choice of functionsf

andg in the phase-field equations. However, it is easy to
that the term proportional toA vanishes identically as long a
f andg are even and odd functions ofc, respectively@i.e.,
f (2c)5 f (c) and g(2c)52g(c)#. In this case Eq.~33!
implies that both]hc0 and gc

05gc„c0(h)… are even func-
tions of h, and that

E
2`

1`

dh]hc0gc
0Ah50. ~50!

This integral vanishes since the product]hc0gc
0h is odd in

h. Secondly, for a general choice of functionh, Eq. ~48!
implies that F1ÞF2, and therefore thatui

1Þui
2 . So, in

general, there is a temperature discontinuity at the interf
on the scale of the outer solution. This discontinuity, ho
ever, vanishes ifh is chosen in addition to be an odd functio
of c. It is straightforward to see that in this case Eq.~48!
implies that

F6[F5E
0

`

dh~h011! ~51!

and therefore that

ui
6[ui5pS ū11

v
2

F D . ~52!

The main conclusion is that the standard form of t
velocity-dependent Gibbs-Thomson condition is obtained
both g andh are odd functions ofc, and f is an even func-
tion of c, which is in itself rather miraculous. Combinin
Eqs.~40!, ~41!, and~50!, we obtain that

ū152
I

lJ
~av1k!1

K

2J
v, ~53!

where we have defined the integrals
e

ce
-

if

I 5E
2`

1`

dh~]hc0!2, ~54!

J52E
2`

1`

dh]hc0gc
0 , ~55!

K5E
2`

1`

dh]hc0gc
0E

0

h
dh8h0. ~56!

Substituting this expression forū1 into Eq. ~52!, we obtain

ui52
a1

l
pk2

a1a

l F12a2

l

a Gpv, ~57!

with

a15
I

J
, ~58!

a25
K1JF

2I
. ~59!

The values of the solvability integralsI , J, K, andF and
the resulting values for the constantsa1 anda2 are given in
Table I for the two choices ofh(c) used in this paper:
h(c)5hIVF(c)5c and h(c)5hVF(c)515(c22c3/31
c5/5)/8. It is easy to see that Eq.~57! is identical to the
standard velocity-dependent Gibbs-Thomson condition

ui52d0~1/R111/R2!2bV, ~60!

where d0 and b are defined by Eqs.~6! and ~10!, respec-
tively. Finally, Eq.~10! can be rewritten in the form

b5b0F12l
a2d0

Db0
G ~61!

by expressingW andt in terms ofd0 andb0. In this form,
the correction to the kinetic coefficient appears as a high
order term in an asymptotic expansion inl similar to the one
used by Caginalp and others@18# to analyze the sharp
interface limit of the phase-field model. In this expansio
carried out in Appendix A, the surface tension and kine
terms in the Gibbs-Thomson condition areO(1) quantities
and the aboveO(l) correction to the leading order kineti
coefficientb0 is obtained from the solvability condition tha
there exists an inner phase-field solution atO(l2), whereas
in the present asymptotics the interface is isothermal at le
ing order and the surface tension and kinetic terms
treated as smallO(p) corrections that are both obtained fro
the solvability condition for the existence ofc1.

TABLE I. Numerical values for the solvability integrals an
constants for two choices ofh(c).

h(c) I J K F a1 a2

hIVF(c) 2A2/3 16/15 0.1360 A2ln2 0.8839 0.6267
hVF(c) 2A2/3 16/15 0.2236 0.4941 0.8839 0.3981
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B. Anisotropic interfacial energy and kinetics

We now examine the more physically realistic situati
where bothW(n) and t(n) are functions of the normal di
rection n. The main result that we obtain is the interfa
condition

ui52
a1

l (
i 51,2

@W~n!1]ū i

2
W~n!#

1

Ri
2b~n!V, ~62!

where

b~n!5
a1

l

t~n!

W~n!F12a2l
W~n!2

Dt~n!G , ~63!

and whereū1 and ū2 are the angles between the normal a
the local principal directions on the interface. This result c
be derived in a relatively simple way. For this purpose,
first note that the expression for the kinetic coefficient can
obtained by considering solely the motion of a planar int
face perpendicular ton. This is equivalent to carrying out th
same calculation as for the isotropic case above, but w
zero curvature. This implies that the expression forb(n)
must be identical to Eq.~10! with t simply replaced byt(n)
andW replaced byW(n). Similarly, the surface tension term
can be derived by considering solely a stationary interfa
One way to derive this term is to repeat the asymptotic c
culation of Sec. III A above including the extra partial d
rivatives in the phase-field equations that are generated
taking the functional derivative of the free energy withW
replaced byW(“c/u“cu). This calculation is relatively
straightforward to carry out in 2D along the lines of Re
@18#. It becomes more tedious in 3D because of the leng
form of the anisotropic phase-field equations, although m
of this tediousness is removed by making elegant use a
Wheeler and McFadden@59# of the j-vector formalism of
Cahn and Hoffman@60# in a phase-field context. Here, w
only give a simple physically based derivation, equally va
which consists of minimizing the total free energyFiso of the
system under isothermal condition. This is directly ana
gous to the way in which the anisotropic Gibbs-Thoms
condition is usually derived in the sharp-interface limit. L
us consider an inclusion of solid in a total volumeV of solid
and liquid that is taken to be constant. We require that
variation of the total free energy with respect to an infinite
mal perturbation of the interface of arbitrary shape vanish
or that

d~Fiso2F0!50, ~64!

whereF0 is some arbitrary constant. The separate contri
tions of the bulk and surface energy terms can be made
plicit by choosingF05@ f B1lg(21)u#V, with f B[ f (61)
521/4. With this choice,F0 is just a constant that corre
sponds to the total free energy of the system with the volu
V occupied solely by the liquid phase. Combining the e
pression forFiso given by Eq.~22! and the expression forF0
above, Eq.~64! becomes
n
e
e
-

th

e.
l-

by

y
h
in

,

-
n
t

e
-
s,

-
x-

e
-

dH E
V
dV@W~n!2/2u“W cu21 f ~c!2 f B#

1luE
V
dV@g~c!2g~21!#J 50, ~65!

where the first and second integrals are over the fixed
ume V and represent the surface and bulk energy contri
tions, respectively. Note that the integrand of the first in
gral term in the equation above vanishes everywhere ex
in the region near the interface, whereas the integrand of
second integral term is a constant that is equal tog(11)
2g(21)5J @with J defined by Eq.~55!# everywhere in the
solid phase and that vanishes in the liquid phase. There
in the limit where the interface width is small compared
the size of the solid inclusion, we can rewrite Eq.~65! in the
form

dS E
S1

dSg~n!1lJuE
V1

dVD 50, ~66!

whereS1 is the surface bounding the solid inclusion of vo
umeV1 and where the surface energy

g~n![W~n!E
2`

1`

dh@~]hc0!2/21 f ~c0!2 f B#5W~n!I .

~67!

As before,c0 denotes the stationary one-dimensional pha
field profile given by Eq.~33!, whereh5j3 /W is the local
coordinate along the normal, and the constantI is defined by
Eq. ~54!. The second equality on the right-hand side of E
~67! can be obtained simply by multiplying the right-han
side of Eq. ~33! by ]hc0, and integrating overh, which
yields

~]hc0!2

2
2@ f ~c0!2 f B#5C, ~68!

whereC is a constant of integration. Sincef (c0)2 f B50 in
the bulk phases, this constant must vanish. Therefore
integral on the right-hand side of Eq.~67! is exactly equal to
the constantI defined by Eq.~54!. Finally, the variation of
Eq. ~66! is well known and yields at once the curvatur
dependent part of the Gibbs-Thomson condition defined
Eq. ~62!.

IV. ONE-DIMENSIONAL STEADY STATES

A. Sharp-interface steady states

In order to illustrate the practical implementation of th
thin-interface limit developed in the preceding sections, it
useful to first consider the steady-state growth of a pla
interface for undercoolingD.1 @61#. This problem has the
advantage that it is exactly soluble analytically in the sha
interface limit and that it is relatively simple to investiga
computationally since it is only one dimensional. The sha
interface equations that describe this problem consist of
diffusion equation expressed in a frame moving at cons
velocity V with the interface in the1x direction,



fo

fie

se
-
in

e

nu
th

e

f
g
ar
n
ve

n

e

is
rily

s
cal-
-
2.
ical

ter-
by

n be

exact
it

57 4331QUANTITATIVE PHASE-FIELD MODELING OF . . .
V]xu1D]x
2u50, ~69!

together with the interface boundary conditions

V52D]xu, ~70!

ui52bV, ~71!

and the far-field boundary condition

u~1`!52D. ~72!

It is easy to verify that Eqs.~69!–~72! have an exact solution
given by

V5
D21

b
, ~73!

with the temperature profile

u5expF2
V

D
xG2D ~74!

in the liquid (x>0), andu512D in the solid (x<0).

B. Phase-field steady states

In order to relate the sharp-interface and phase-field
mulations we need to calculate the analog of Eq.~73! for the
steady states of the phase-field model. In 1D, the phase-
equations take the form

t] tc5W2]x
2c1@c2lu~12c2!#@12c2#, ~75!

] tu5D]x
2u1] tc/2, ~76!

where we restrict for simplicity our attention to the ca
h(c)5hIVF(c)5c. The VF gives qualitatively identical re
sults. The steady-state growth equations are simply obta
by rewriting Eqs.~75! and ~76! in the moving frame of the
interface, which yields

tV]xc1W2]x
2c1@c2lu~12c2!#@12c2#50, ~77!

V]xu1D]x
2u2V]xc/250. ~78!

The solution of these equations withu subject to the far-field
boundary condition Eq.~72! determines the planar interfac
velocity as a function of the undercooling.

This nonlinear boundary value problem was solved
merically using a Newton-Raphson iteration scheme. For
purpose, Eqs.~77! and~78! were discretized withN equally
spaced mesh points inside the intervalxP@2d,d# with the
interface (c50) fixed atx50. The spatial derivatives wer
represented using fourth-order accurate@i.e., O(Dx4)# finite
difference formulas for accuracy. The unknown values oc
andu at the mesh points, andV, were then determined usin
a Newton-Raphson solver with the appropriate bound
conditions at the two end points of the interval. One tech
cal point should be mentioned. The problem was not sol
by imposing the far-field boundary condition Eq.~72! di-
rectly. This would require, in principle, choosingd@ l ,
where l 5D/V is the diffusion length, and hence unreaso
r-

ld

ed

-
is

y
i-
d

-

ably large values ofN at small velocity. This difficulty was
circumvented by noting thatc andu are only nontrivial un-
knowns in the interfacial region wherec varies rapidly. Out-
side this regionc andu have trivial solutions, i.e.,c561,
u512D in the solid, andu is a decaying exponential in th
liquid. Therefore Eqs.~77! and~78! were solved over a fixed
interval by choosingd to be much larger thanW but inde-
pendent of velocity. Boundary conditions onc and u were
applied atx56d that match to these trivial solutions. Th
method allowed us to calculate steady states for arbitra
small V with d! l . The choicesd520, N5100, andDx/W
50.4 with W5t51 were found to yield interface velocitie
accurate to less than one-tenth of a percent. Numerically
culated values ofV vs D21 are shown in Fig. 1. Steady
state interface and diffusion profiles are illustrated in Fig.
These results were checked by integrating the dynam
equations~75! and ~76! for a few values ofD. These simu-
lations showed that after some dynamical transient the in
face reached the velocity and stationary profiles predicted
the numerical solution of the steady-state problem.

C. Comparison of sharp-interface and phase-field steady states

The sharp-interface and phase-field steady states ca
compared by expressingb in Eq. ~73! in terms of the param-

FIG. 1. Numerically calculated values ofVt/W vs D21 for the
planar steady states of the phase-field model compared to the
prediction of Eq.~73! with b predicted by the sharp-interface lim
@Eq. ~7!# and by the thin-interface limit@Eq. ~10!#.

FIG. 2. Calculated steady-state profiles ofu and c for D
51.225.
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eterst, W, l, andD of the phase-field model. This can b
done either by using the expression forb predicted by the
standard sharp-interface limit@Eq. ~7!# or by the thin-
interface limit@Eq. ~10!#. Both sets of comparisons are ma
in Fig. 1 in order to contrast the relative computational a
vantage of these two asymptotic limits. The results of t
figure can be understood by noting that Eq.~73! can be re-
written in the form

p[
WV

D
5

l

aa1
F D21

12a2l/aG , ~79!

by using Eq.~10! to eliminateb. This implies thatp→0 as
D→1, and therefore that the thin-interface limit should gi
an exact agreement with Eq.~73! asD→1, which is what is
seen in Fig. 1. In contrast, the standard sharp-interface l
does not predictb correctly unless the additional constrai
l/a!1 is satisfied. Sincel/a is of O(1) in the present
example, this limit remains inaccurate even though the
fusion length becomes much larger thanW asD21→0! The
computational advantage of the thin-interface limit is se
here to depend solely on the fact that it predicts a kine
coefficient that remains valid for a thicker interface.

D. The case of negative kinetic coefficient„b<0…

We conclude this section by examining the case where
kinetic coefficient predicted by the thin-interface limit b
comes negative. This occurs according to Eq.~10! when
a2lW2/Dt.1. To see what to expect in this case, let us fi
consider the prediction of the sharp-interface theory. It p
dicts that forb,0 there should exist a steady-state plan
solidification front for D,1 with a velocity given by Eq.
~73!. However, an analysis of sharp-interface equations
veals that planar steady states are linearly unstable fob
,0, and are therefore not physically relevant. In this ca
the interface slows down asV;t21/2, in the same way as fo
b>0 since the kinetics become irrelevant whenV→0. The
same is true in phase-field simulations. Solutions of Eqs.~77!
and~78! exist forb,0 andD,1 as illustrated in Fig. 3. We
verified that these solutions are unstable by feeding
steady-state profiles ofu and c, computed by solving Eqs

FIG. 3. Example of calculated 1D steady-state profiles ofu and
c for a case where the kinetic coefficientb predicted by the thin-
interface limit@Eq. ~10!# is negative. Steady-state solutions are d
namically unstable forb,0, both in the sharp-interface theory an
in the phase-field model, and are therefore not physically relev
-
s

it

f-

n
c

e

t
-
r

e-

e,

e

~77! and~78!, as inputs into the 1D time-dependent code th
integrates Eqs.~75! and ~76!. The interface evolved into a
dynamical state with a velocity that decreases slowly
;t21/2 and is the same dynamical attractor as forb.0.

V. TWO-DIMENSIONAL SIMULATIONS

In this section we describe our phase-field results for d
dritic growth in 2D. We consider growth without and wit
kinetics successively.

A. Without kinetics

In 2D, the Gibbs-Thomson condition defined by Eq.~62!
becomes simply

ui52d0~n!/R2b~n!V, ~80!

where

d0~n!5
a1

l
@W~n!1]ū

2
W~n!# ~81!

and ū is the angle between the normal to the interface a
some fixed crystalline axis~e.g.,z axis!. We choose here a
standard fourfold anisotropy defined by

d0~n!5d0@as~n!1]ū
2
as~n!# ~82!

and

as~n!5ās@11e8~nx
41ny

4!#5ās@11e8~sin4ū1cos4ū !#.
~83!

The anisotropy strength is characterized by the parametee4
that can be measured experimentally by examining the
viation of an equilibrium shape from a circle. For smalle4,
this deviation is given by

R~u!5R0@11e4cos4ū #, ~84!

whereR is the radial polar coordinate measured from a fix
origin.

In this paper we will usee4 as the measure of the aniso
ropy and it is easy to check thatās ande8 are related toe4 by
the expressions

ās5~123e4!, ~85!

e85
4e4

123e4
. ~86!

The 2D phase-field equations are obtained by replacingW
by W(n) in the gradient term of the free energy, which yiel
after functional differentiation

] tu5D¹2u1
1

2
] th~c!, ~87!

-

t.
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t~n!] tc5@c2lu~12c2!#~12c2!1¹W •@W~n!2¹W c#

1]xS u¹W cu2W~n!
]W~n!

]~]xc! D
1]yS u¹W cu2W~n!

]W~n!

]~]yc! D . ~88!

The interface widthW depends on the orientation of th
interface and is given by

W~n!5W0as~n!

5W0~123e4!F11
4e4

123e4

~]xc!41~]yc!4

u“W cu4 G .

~89!

We first focus our attention on growth in the limit o
vanishing interface kinetics. This limit is obtained by setti
t(n) andl equal to the values

t* ~n!5t0as~n!2, ~90!

l* 5
1

a2

Dt0

W0
2

~91!

that make the kinetic coefficientb defined by Eq.~63! vanish
identically. Equations~87! and ~88! were discretized using
standard second-order finite difference formulas, except¹2c
which was discretized using a nine-point formula with ne
est and next nearest neighbors which reduces the grid an
ropy. Thec and u fields were time stepped using, respe
tively, a first-order Euler scheme and a second-order imp
Crank-Nicholson scheme@62#. For smaller values ofD, we
also used a second version of the code whereu is time
stepped with an Euler scheme. The simulations were
formed on two-dimensional lattices of rectangular siz
Nx3Ny and constant grid spacingDx in both directions.
Simulations were seeded with a small quarter disk of solid
one corner of the lattice and a spatially uniform undercool
u52D. To reduce the computational time, simulations we
performed only in the quadrantx.0 andy.0. Care has to
be taken that the diffusion field along the direction of grow
does not reach the end of the computational box. One wa
accomplishing this is to choose a box size that can acc
modate the final fully converged dendrite and its diffusi
field. This would require large box sizes and hence lo
simulation times. Instead, we have chosen to periodic
translate the phase and diffusion fields a certain distanc
the direction opposite to the growth of the tip. This proc
dure allows us to compute the dendrite tip in a smaller b
and leads to a significant speed up of the simulations.
have checked that the results we report here are indepen
of this translation.

The simulations reported here are for the fixed valu
W051 andt051. Note, however, that we can always re
cale space and time such that the only independent pa
eters that appear in the phase-field equations area and l.
We have keptW0 andt0 in the equations to keep dimension
explicit for clarity of exposition.
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The interface is defined as the contour for whichc50.
The tip velocityVtip was calculated from the position of th
c50 point along the growth direction. It was allowed
reach a steady-state value after which the simulation
ended. Plots of the dimensionless tip velocityṼtip
5Vtipd0 /D vs time for two different values ofe4 are shown
in Fig. 4.

To select the grid spacingDx for our simulations, we
decreasedDx/W0 in steps of 0.1 untilVtip did not change in
value by more than 2%. In Fig. 5 we plotṼtip vs Dx/W0 for
the two choices ofh(c) along with the value obtained from
the Green function calculation. The two choices correspo
to the IVF and the VF, respectively„i.e., hIVF(c)5c and
hVF(c)515(c22c3/31c5/5)/8 for which Eqs.~87! and
~88! also reduce to the entropy formulation@5# used in the
computations of Refs.@14,17#…. Figure 5 shows clearly tha
the IVF converges more rapidly than the VF. Furthermo
although not shown here, we have found that for highV the
VF can produce an unphysical spurious branch of stea
state growth solutions. For these reasons we have chose
perform our computations with the IVF andDx/W050.4.

Let us now consider the convergence of our results a
function of the computational parameters. For this, we fi
note that, forb50, d0 andD can be scaled out completel

FIG. 4. Dimensionless tip velocity as a function of time for tw
choices ofe4 andD50.55 andDx/W050.4.

FIG. 5. Dimensionless tip velocity as a function of grid spaci
for two choices of h(c) for D50.65, e450.05, and d0 /W0

50.554. The dashed line corresponds to the value obtained f
the Green function calculation.
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from the free-boundary problem of dendritic growth by me
suring length and time in units ofd0 andd0

2/D, respectively.
This implies that the dimensionless tip velocity and tip rad
are functions of undercooling and anisotropy only and can
written as

Ṽtip5
Vtipd0

D
5FV~D,e4!, ~92!

r̃ tip5
r tip

d0
5Fr~D,e4!. ~93!

Next, recall that the derivation of the thin-interface limit
based on treatingp5W0 /l c as small parameter. Therefor
the convergence of our results can be established by dec
ing the parametersptip[W0Vtip /D or k tip[W0 /r tip , and
checking thatṼtip and r̃ tip converge to fixed values. Anothe
way to check convergence is to compare the interface sh
to the exact shape as we shall do below. In practice, con
gence was achieved by decreasingD and concomitantly de-
creasingl* ;D via Eq. ~91! to keepb50. SinceVtip and
r tip are proportional toD/d0 andd0, respectively, and since
d0 is proportional toW0 /l* , decreasingD is equivalent to
decreasing simultaneouslyptip5W0Vtip /D and k tip
5W0 /r tip . It is also equivalent to decreasing the ra
W0 /d0 and showing that our results are independent of
terface thickness. We took as a satisfactory measure of
vergence thatṼtip does not vary by more than a few perce
upon decreasingW0 /d0. A typical convergence result i
shown in Fig. 6. Finally, a typical sequence of dendritic p
terns is shown in Fig. 7, where we plot thec50 contour
every 5000 iterations.

It is possible to benchmark the results of our phase-fi
codequantitativelysince the theory of the operating state
the dendrite tip is well established in 2D. The steady-st
growth problem can be solved numerically to any desi
precision, giving predictions of the dendrite tip velocity a
the steady-state interface shape. To obtain these st
states, Eqs.~3!, ~4!, and~62! are first written in the moving
frame ~moving with a velocityVtip) and then recast into a
single integral equation by the standard Green funct

FIG. 6. Dimensionless tip velocity as a function ofW0 /d0 for
D50.55 ande450.05. As in Fig. 5 the dashed line corresponds
the value obtained from the Green function calculation.
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method. This equation was first written down by Nash a
Glicksman@63# and takes the form

D2d0~n!k2b~n!Vtipcosū

5E
2`

1` dx8

2p l
expFy~x!2y~x8!

l GK0F ur 2r 8u
l G , ~94!

where l[2D/Vtip is the diffusion length. Several group
@37–39# have solved Eq.~94! and shown that it admits a
discrete spectrum of solutions if a finite amount of anis
ropy, in either the surface energy@37–39# or the interface
kinetics@41#, is present. Only the fastest growing solution
this discrete set is stable and corresponds to the dynamic
selected operating state of the dendrite tip@44,46#.

To benchmark our simulation results, we solved nume
cally the steady-state growth problem defined by Eq.~94!.
The input parameters of these calculations were chose
correspond exactly to those of the phase-field computatio
namely,b(n)50, d0 defined by Eq.~82!, andas(n) defined
by Eq. ~83!. A comparison of the dimensionless steady-st
tip velocities obtained by phase-field simulations a
Green’s function calculations is shown in Table II. A com
parison of interface shapes for two different undercooling
shown in Fig. 8.

It can be seen that the quantitative agreement is rem
ably good over the whole range ofd0, D, ande4 investigated
here. Table II shows that accurate simulations are still p
sible at a very smalld0 /W0 ratio with an enormous gain in
computational efficiency in agreement with the estimate
the computation time given by Eq.~9!.

B. With kinetics

Above we have chosen the computational parame
such that the kinetic coefficient vanishes but we can a
perform simulations with a nonzero kinetic coefficient. As
example we have simulated a kinetically controlled dend
with an isotropic surface energy@i.e., W(n)5W0# and a fi-
nite kinetic anisotropy. The kinetic anisotropy was intr
duced by choosingt(n)5t0@11 ẽ kin(nx

41ny
4)#. If this form

is substituted into Eq.~63!, we obtain

FIG. 7. Sequence of interface shapes shown every 5000 it
tions for the parameter valuesD50.65, e450.05, d0 /W050.554,
andDt/t050.075.
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TABLE II. Comparison of steady-state tip velocities calculated by phase-field simulations (Ṽtip) and

calculated by the Green function method (Ṽtip
GF). TCPU denotes the CPU time in hours for simulations on

DEC Alpha 3000-700 workstation.TCPU on one processor of the Cray C90 is roughly five times smaller.
relevant computational and material parameters areW051, t051, Dx/W050.4, Dt/t050.016, andh(c)
5c. l is chosen equal tol* defined by Eq.~91! to simulate kinetic-free growth.

D e4 D d0 /W0 Ṽtip Ṽtip
GF % error Nx Ny TCPU

0.65 0.05 1 0.554 0.0465 0.0469 1 600 300 2
0.55 0.05 2 0.277 0.0168 0.0170 1 800 200 4
0.55 0.05 3 0.185 0.0175 0.0170 3 600 200 1
0.55 0.05 4 0.139 0.0174 0.0170 2 400 150 0.2
0.50 0.05 3 0.185 0.01005 0.00985 2 1000 200 3
0.45 0.05 3 0.185 0.00557 0.00545 2 1000 300 14
0.45 0.05 4 0.139 0.00540 0.00545 1 800 250 5
0.30 0.05 10 0.055 0.00064 0.00068 6 1200 400 25
0.25 0.05 13 0.043 0.00027 0.00028 4 4000 1000 10
0.60 0.03 2 0.277 0.0183 0.0188 3 600 300 5
0.55 0.02 2 0.277 0.00735 0.00685 6 800 400 10
an
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b~n!5b̄@11ekin~nx
41ny

4!#, ~95!

whereb̄ andekin are functions oft0, l, and ẽ kin which can
be easily derived using Eq.~63!. For our simulations, we
have chosen these parameters such thatb̄50.6 and
ekin50.05. The results are presented in Table III. The qu
titative agreement is again within a few percent as expec

VI. THREE-DIMENSIONAL EQUATIONS
AND LATTICE ANISOTROPY

A. Basic equations

The Gibbs-Thomson condition takes the form

ui52d0 (
i 51,2

@as~n!1]ū i

2
as~n!#/Ri2b~n!V, ~96!

FIG. 8. Comparison of steady-state tip shapes calculated
phase-field simulations~lines! and the Green function method~sym-
bols! for e450.05. The two interfaces correspond toD50.55,
d0 /W050.277 ~solid line and circles!, and D50.45, d0 /W0

50.185 ~dashed line and squares!. The time step in both simula
tions wasDt/t050.016. For clarity, only one out of every fou
symbols along the interface is shown for the Green function res
-
d.

where the underlying cubic symmetry of the surface ene
is expressed byas(n),

as~n!5ās@11e8~nx
41ny

41nz
4!#

5ās@11e8~cos4ū1sin4ū$122sin2f̄cos2f̄%!#.

~97!

Here ū andf̄ are the standard spherical angles that the n
mal to the solid-liquid interface, and its projection in thex-y
plane, make with respect to thez axis and thex axis, respec-
tively. The constantsās and e8 can again be related to th
usual measure of the anisotropy strengthe4 using Eqs.~85!
and ~86!.

The corresponding phase-field equations take the form

] tu5D¹2u1] tc/2, ~98!

t~n!] tc5@c2lu~12c2!#~12c2!1¹W •@W~n!2¹W c#

1]xS u¹W cu2W~n!
]W~n!

]~]xc! D
1]yS u¹W cu2W~n!

]W~n!

]~]yc! D
1]zS u¹W cu2W~n!

]W~n!

]~]zc! D , ~99!

y

s.

TABLE III. Comparison of steady-state tip velocities calculat

by phase-field simulations (Ṽtip) and calculated by the Green func

tion method (Ṽtip
GF) for the pure kinetic dendrite. The relevant com

putational and material parameters areW051, l54.42, D51, t0

55.77,Dx/W050.4, Dt/t050.0577,ekin50.05.

D d0 /W0 Ṽtip Ṽtip
GF % error

0.85 0.20 0.0202 0.0206 2
0.80 0.20 0.0142 0.0136 4
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where we have chosenh(c)5c and

W~n!5W0~123e4!F11
4e4

123e4

~]xc!41~]yc!41~]zc!4

u“W cu4 G
~100!

corresponding to a cubic anisotropy as in Eq.~97!. As in our
2D simulations, we will useW051 in all our 3D simula-
tions.

All spatial derivatives were discretized usingDx2 accu-
rate finite difference formulas. The Laplacians¹2c and¹2u
were discretized using the six-point nearest-neighbor
mula:

Dx2¹2c'c i 11 jk1c i 21 jk1c i j 11k1c i j 21k1c i jk 11

1c i jk 2126c i jk , ~101!

where the indices (i , j ,k) measure position along the (x,y,z)
axes, respectively. The cross partial derivatives were
cretized using the four-point formula

~4Dx2!]xy
2 c'c i 11 j 11k2c i 11 j 21k2c i 21 j 11k1c i 21 j 21k ,

~102!

with similar formulas for]xz
2 c and]yz

2 c. Time stepping was
done using a first-order Euler scheme. The simulations w
performed on a cubic grid of sizeNx3Ny3Nz with a con-
stant grid spacingDx. Because of the cubic symmetry on
an octant is sufficient to provide the full shape of the de
drite. Simulations were started with a small spherical see
the corner of the octant and with a spatially uniform und
cooling u52D.

B. Lattice anisotropy

In this section we describe a numerical procedure t
incorporates corrections to the surface tension and kin
anisotropy due to the discreteness of the lattice. This pro
dure makes it possible to chooseDx larger than needed to
fully resolve the spatial derivatives in the interfacial regi
wherec varies rapidly on the scale ofW as well as to re-
solve smaller anisotropies. While anisotropies larger tha
few percent are relatively easy to simulate, values sma
than 1% become difficult to resolve because of the contri
tion of the grid anisotropy. The fact that the lattice has
same cubic symmetry as the crystal can be exploited to
fine an effective anisotropy that includes the contribution
the underlying grid.

There is of course a limit to how largeDx can be chosen
that is set by the onset of oscillations in the interface posit
on the scale of the lattice. These oscillations, which are
to the pinning effect of the lattice on the interface, have be
analyzed in a pioneering paper by Cahn@64#, and further
studied numerically by Reynolds and co-workers@65#. In
practice, we have found that accurate simulation results
be obtained by our procedure ifDx is chosen about twice
larger than needed to resolve accurately the continuum l
of the phase-field equation. This is demonstrated explic
for dendritic growth in 2D. For this value ofDx, the lattice
oscillations appear to be sufficiently small not to produ
spurious sidebranching. The increase inDx by a factor of 2
r-
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reduces the simulation time by a factor of about 25 in 3D
sincetsim;(Dx/d0)2(21d) in d dimensions and allows us t
resolve an anisotropy of surface tension as small as 2/3
percent with about 10% accuracy.

1. Surface energy

To calculate the effective surface tension anisotropy,
fined here asee , we simulate the 3D equilibrium shape pro
duced by the phase-field model with a given value ofe4
input in the functionW(n) defined by Eq.~100!. We then
match this shape to the theoretical shape of an equilibr
crystal in the sharp-interface theory@60#, which can be ex-
pressed in Cartesian coordinates as@66#

x5R0@ f ~ ū,f̄!sin~ ū!cos~f̄!1] ūf ~ ū,f̄!cos~ ū!cos~f̄!

2]f̄f ~ ū,f̄!sin~f̄!/sin~ ū!#, ~103!

y5R0@ f ~ ū,f̄!sin~ ū!sin~f̄!1] ūf ~ ū,f̄!cos~ ū!sin~f̄!

1]f̄f ~ ū,f̄!cos~f̄!/sin~ ū!#, ~104!

z5R0@ f ~ ū,f̄!cos~ ū!2] ūf ~ ū,f̄!sin~ ū!#, ~105!

where

f ~ ū,f̄!511
4ee

123ee
@cos4 ū1sin4 ū~122sin2f̄cos2f̄!#

~106!

and (ū,f̄) are as before the spherical angles of the normal
the solid-liquid interface. To determineee we then match the
phase-field and theoretical shapes in they-z plane. This is
simply done by measuring on the cross section of the
phase-field shape in this plane the radial distances from
origin to the interface (c50) along they axis, R10, and
along they5z line, R11, and substituting these distances
the expression

ee5
R10/R1121

R10/R1111
, ~107!

which is simple to work out. Note that this procedure on
works well in practice because the underlying grid has
samecubic symmetry as the lattice. For this reason, the
tire 3D phase-field shape can be accurately fitted by
equations above with a simple cubic anisotropy, as show
Fig. 9.

One practical detail is worth mentioning. The phase-fie
equilibrium shape is simulated by only evolvingc with a
spherical solid inclusion of radiusR0 as initial condition. The
temperature field is kept constant in space, and chosen
tially equal to the critical undercooling for which this equ
librium shape would neither shrink nor grow if the surfa
energy were isotropic~i.e., D5d0 /R0). This undercooling is
then slightly adjusted in time by a feedback mechanism t
maintains the velocity of the interface, measured along so
arbitrary axis, equal to zero~i.e., D is increased by some
small amount if the crystal shrinks and decreased if
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grows!. This procedure is dynamically stable and selects
tomatically the exact undercooling for which the crystal n
ther shrinks nor grows.

Results of our equilibrium shape phase-field simulatio
are illustrated in Fig. 9 where we show the numerically o
tained shapes in the~100! plane ~solid circles! and in the
~110! plane ~open squares! for the grid spacingDx/W0
50.8 used in our 3D computations of the next section. T
theoretical equilibrium shapes calculated withee in the ~100!
and~110! plane are drawn as solid lines and are seen to a
very well with the simulated shapes. We have also drawn
reference a dashed line that represents a circle correspon
to an isotropic solid inclusion.

In order to check whether the effective anisotropy d
pends on the size of the seed crystal, the procedure to ca
late ee was repeated for differentR0. As can be seen in Fig
10, the effective anisotropy depends weakly onR0. For all

FIG. 9. Phase-field simulated equilibrium shapes in the~100!
plane ~solid circles! and the~110! plane ~open squares! and the
theoretical shapes for the correspondingee ~solid lines! for the grid
spacingDx/W050.8. The anisotropy used as input into the pha
field equations ise450.05 whereas the effective anisotropy o
tained by fitting to the theoretical equilibrium shape isee50.047.
The dashed line shows a circle corresponding to an isotropic s
inclusion for reference.

FIG. 10. The effective anisotropyee that includes the smal
correction of the lattice anisotropy as a function of the radiusR0 of
the equilibrium shape fore450.05 and for the grid spacing
Dx/W050.8.
-
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values ofe4 investigated here, we have taken the valueee
corresponding toR0540 lattice units. This value was moti
vated by the averaged observed tip radius in our simulatio
Note though that, in the entire rangeR0515–60,ee does not
vary by more than about 6% of its mean value. This rep
sents the accuracy to which we can determine the effec
anisotropy. Values ofee for variouse4 can be found in Table
V. Finally, in Fig. 11 we plotee as a function ofe4 for the
range of anisotropies we have used in this paper. The
are well fitted with a linear fit indicating that the grid aniso
ropy is constant and independent of the input anisotropy

As will be shown elsewhere@67#, it turns out that one can
also analytically derive a relation betweenee and e4 of the
form

ee5e42aDx21O~e4Dx2!1O~Dx4!, ~108!

wherea is a numerical constant that depends on the cho
of the function f (c). This result is obtained by writing the
discretized Laplacian as the sum of¹2c, which is rotation-
ally invariant, and the higher-order term proportional
Dx2(]x

41]y
41]z

4)c, which has a cubic symmetry and mod
fies the surface tension anisotropy. Forf (c) defined by Eq.
~17!, a51/240, such that Eq.~108! gives an excellent agree
ment with the values ofee obtained by fitting the equilibrium
shapes.

2. Interface kinetics

In Sec. III we derived an analytical expression for t
anisotropic kinetic coefficientb(n) in the thin-interface limit
@Eq. ~63!#. For the valueDx/W050.8 used in our 3D com-
putations, there are lattice corrections to the kinetic coe
cient, and thus to the functiont* (n) and the parameterl*
that makeb(n) vanish. It is possible to incorporate quan
tatively these corrections as long asDx is within a certain
range where time-periodic oscillations of the interface vel
ity on the scale of the lattice spacing remain of sufficien
small amplitude. The basic strategy consists of developin
method to calculate the planar interface velocity on a disc
lattice in a range ofDx where these oscillations are neglig
bly small. This procedure can then be readily extended

-

lid

FIG. 11. The effective anisotropyee that includes the smal
correction of the lattice anisotropy as a function of the anisotro
parametere4 that is used as input into the phase-field equations
the grid spacingDx/W050.8. The solid line is a linear fit through
the data points.
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calculate an effective kinetic coefficient,be(n), and there-
fore an effective function,te* (n), and constantle* , which
makebe(n) vanish.

To illustrate the nature of these velocity oscillations it
useful to first consider the simple front problem defined b

t0] tc5W0
2]x

2c1c2c32u. ~109!

This problem corresponds to the purely kinetic control
motion of a planar interface, without diffusion, where t
dimensionless interfacial undercoolingu is constant and se
to u52D. In the continuum limit, this equation has a co
stant velocity traveling wave solutionc(x,t)5c(x2Vt)
moving in the 1x direction for u,0, whereV;2u for
small uuu. On a discrete lattice, with a centered finite diffe
ence representation of the spatial derivative, Eq.~109! be-
comes

] tc i5
1

Dx2
~c i 111c i 2122c i !1c i2c i

32u, ~110!

wherec i(t) denotes the value ofc(x,t) at x5 iDx, and we
have setW05t051 for simplicity. This equation is discret
in space and continuous in time. Treating time as a cont
ous variable is justified because the interface velocity
small V!1 ~i.e., V5ap in units wheret05W051). Con-
sequently, the error made in calculating] tc with an Euler
scheme scales as] t

2cDt, or V2]x
2cDt. Furthermore, since

the stability of the scheme requires one to chooseDt
;Dx2/2d in d dimension, this error scales asV2]x

2cDx2/2d.
It is therefore smaller by a factor ofV2/2d than the error
made in the spatial discretization, which scales as]x

2cDx2.
Therefore, for all practical purposes,t can be treated as
continuous variable as long asV is small.

Equation~110! also has a moving front solution, but wit
an interface velocity which oscillates in time for largeDx
because the lattice acts as an effective periodic potentia
which the interface is riding. Furthermore, this periodic p
tential tends to pin the interface. Consequently, for a giv
undercooling, there exists a critical value of the lattice sp
ing, Dxc , at which the interface becomes completely pinn
and stalls@64,65#. This pinning is illustrated here in Figs. 12
13~a!, and 13~b!. These results were obtained by integrati

FIG. 12. Interface velocity as a function of time for the fro
solution of Eq.~110! for different values ofDx/W0 andD50.02.
u-
s

on
-
n
-

d

Eq. ~110! with an explicit Euler scheme and a time ste
Dt/t050.005. The interface positionX(t) was calculated by
using a fourth-order accurate interpolation formula to int
polate wherec50. The instantaneous interface velocityV
[dX(t)/dt was approximated by the formula@X(t1Dt)
2X(t2Dt)#/(2Dt). The average interface velocityVav was
defined as the time-averaged velocity, or equivalently as
total distance traveled by the interface during one oscillat
period,DX, divided by the period of the oscillationT: Vav
[DX/T. Finally, the relative oscillation amplitude is define
as A5(Vmax2Vmin)/Vav, whereVmax and Vmin are, respec-
tively, the maximum and minimum interface velocity durin
one period.

The results of Fig. 13 show that there are two contrib
tions of the lattice, which dominate in different ranges ofDx.
The first, which is dominant over a range ofDx smaller than
Dxc @corresponding to where the solid and dashed lines o
lap in Fig. 13~a! and the solid line has a slope equal to 2
Fig. 14# is a slow decrease ofVav due to the correction of
O(Dx2) made in approximating]x

2c by a finite difference
formula. This quadratic dependence onDx is shown in Fig.
14 where we show a log-log plot ofVav(Dx/W050)
2Vav(Dx/W0) vs Dx/W0. This behavior is unrelated to th
pinning effect of the lattice and is already present in a ran

FIG. 13. Plots as a function ofDx/W0 of ~a! the relative ampli-
tude of oscillation, defined as the ratio of the difference between
maximum and minimum interface velocity during one period
oscillation and the average velocity, and~b! the average interface
velocity calculated by the direct numerical integration of Eq.~110!
~solid line and filled circles! and by the approximate theory~New-
ton solver! that neglects the effect of velocity oscillations.
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of Dx where the oscillation amplitude is negligibly sma
The second effect of the lattice is the pinning that becom
dominant asDx approachesDxc . The latter is associate
with a relatively abrupt vanishing of the interface veloc
and occurs in a range ofDx where the oscillation amplitude
A becomes of order unity.

The key point here is that it is possible to chooseDx
relatively large and still have a negligibly small oscillatio
amplitude, in which caseV is essentially independent of tim
and equal toVav. Thus it is possible to perform more effi
cient computations with a largerDx while still having an
interface that behaves dynamically as if space was cont
ous. This, however, requires one to know how to calcul
Vav in order to make contact with the thin-interface lim
One way to computeVav is to simulate Eq.~110! directly,
which becomes somewhat cumbersome whenu is allowed to
diffuse, which is the case we need to consider to calcu
be(n) as described below. Another way, which explicit
excludes the contribution of the lattice oscillations, is to
duce Eq.~110! to a time-independent problem by exploitin
the discrete translation symmetry of the moving front so
tion of Eq. ~110!:

c i~ t1 jT !5c i 2 j~ t !, ~111!

where as beforeT5Dx/Vav is the oscillation period. This
problem can then be solved as in Sec. III by using a New
solver for the unknownc andVav. This is the equivalent to
making a transformation to a moving frame as in the c
tinuum case, albeit for a case wherec is only known at a
discrete set of points. The simplest possible approximatio
] tc i that only involves the nearest neighbors is] tc i
'Vav(c i 212c i 11)/(2Dx). This approximation, however, i
not useful here because it is itself only accurate toO(Dx2).
Using it would defeat the purpose of the present proced
which is to calculate theO(Dx2) corrections toVav induced
by the spatial discretization. Therefore we calculate] tc i by
using the expression

] tc i5Vav]xcux5 iDx ,

which is exact if we neglect the oscillations, and evalu
]xc to spectral accuracy. Since the interface is not perio

FIG. 14. Plot ofVav(Dx/W050)2Vav(Dx/W0) vs Dx/W0 for
Vav(Dx/W0) obtained by direct numerical integration of Eq.~110!
and by the approximate theory~Newton solver! that neglects the
effect of velocity oscillations~solid line and filled circles!.
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i.e., c varies between11 and 21 over the intervalxP
@2d,d#, we construct a new interface over the intervalx
P@2d,3d# that consists of the original interface plus its m
ror image about the pointx5d. This new interface is then
periodic and can be Fourier transformed to calculate]xc in
Fourier space using the relation (]xc)k5 ikck . The inverse
Fourier transform of (]xc)k is then evaluated to obtain
]xcux5 iDx to spectral accuracy. The results are of course
dependent ofd for d/W!1. As shown in Figs. 13 and 14
this procedure gives extremely accurate values ofVav as a
function of Dx and only breaks down when the oscillatio
amplitude becomes non-negligible.

The extension of the above procedure to calculate the
fective kinetic coefficientbe(n), as well asle* andte* (n) is
straightforward. This kinetic coefficient can be convenien
defined as the limit

be~n!5 lim
D→1

D21

Vav~n!
~112!

of the discrete-space analog of the 1D planar front prob
studied in Sec. IV. In this definitionVav(n) denotes the av-
erage velocity of the interface for growth along a directi
parallel ton that is calculated as outlined above by negle
ing the effect of the lattice oscillations and therefore the p
ning to the lattice.†Note that the limit in Eq.~112! is not
defined if the pinning effect of the lattice is included sin
the interface will always get pinned in the@100# direction at
some small enoughD21 for any finiteDx. This is of course
not a limitation since we are only interested in calculati
be(n) in a regime whereDx is such that these oscillation
are small.‡

Because of the cubic symmetry, it is sufficient to calcula
be(n) along two principal crystallographic directions~e.g.,
@100# and@110#! to determinele* andte* (n) and the value of
be(n) along an independent direction~e.g., @111#! can then
be used as a self-consistency check thatle* andte* (n) make
be(n) vanish in all growth directions.

The discrete-space equations of motion of the planar
terface along the@100#, @110#, and @111# directions can be
readily obtained from the discretized version of the 3
phase-field equations@Eqs. ~98! and ~99!# by assuming that
c has the same value atall the lattice points contained within
the corresponding~100!, ~110!, and ~111! plane, respec-
tively, that are perpendicular to these growth directions. T
is exact if we neglect the effect of the lattice oscillations
which case the planar interface translates uniformly alo
these directions. The corresponding 1D equations are defi
by

] tu5
D

h2
~ui 111ui 2122ui !1] tc/2, ~113!

t] tc5@c2lu~12c2!#~12c2!1S KW0

h D 2

3~c i 111c i 2122c i !, ~114!
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with the far-field boundary conditionu→2D far from the
interface, wheret, h, andK depend on the growth directio
and are listed in Table IV.

The effective kinetic function that makesbe(n) vanish is
then defined as

te* ~n!5t0~123d!F11
4d

123d
~nx

41ny
41nz

4!G , ~115!

where the time constantt0 and the anisotropy parameterd
need to be determined together withle* . We determined
these constants by requiring thatte(n) is equal to unity along
the @100# direction, which yields the relationt0(11d)51
between two of the three constants, and by further requi
that be(n) vanishes along the@100# and @110# directions,
which provides two additional independent constraints.
self-consistency check was performed by calculating
magnitude ofbe(n) along the@111# direction, with these
same values oft0, d, andle* . This check yielded a value o
b@111#;1024 which is negligibly small. The results of ou
calculations are presented in Table V.

One last point should be emphasized. The procedure
veloped here works as long as the pinning effect of the lat
is negligible and the lattice oscillations remain small. For
valueDx/W050.8 used in our 3D computations the relati
oscillation amplitude measured at the dendrite tip isA
;1022 for the undercoolingD50.45, which is sufficiently
small.

3. Numerical tests

To test the lattice effects induced by the large grid si
and to verify our results obtained in Secs. VI A and VI B, w
have performed 2D simulations for the grid spacings e
ployed in our 3D work. The effective anisotropy in 2D
identical to the one in 3D since the equilibrium shape in
symmetry planes~e.g., thex-y plane! reduces to the equilib
rium shape in 2D. The results of our 2D simulations a
presented in Table VI. We also show in the table the
velocity calculated by the solvability theory. The agreem
is very satisfying and demonstrates that it is possible to

TABLE IV. Parameterst, K, andh, entering in Eqs.~113! and
~114! for different growth directions.

n t K h

@100# t0(11d) 11e4 Dx
@110# t0(12d) 12e4 Dx/A2
@111# t0(125d/3) 125e4/3 Dx/A3

TABLE V. A summary of the effective parameters forD51.

Dx/W0 e4 ee le* t0 d

0.6 0.0081 0.0066 1.651 0.996 0.0038
0.8 0.015 0.0123 1.697 0.996 0.0038
0.8 0.020 0.0171 1.679 0.982 0.0183
0.8 0.030 0.0265 1.643 0.962 0.0400
0.8 0.040 0.0369 1.608 0.942 0.0615
0.8 0.050 0.0470 1.575 0.924 0.0828
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tain quantitative results with a larger grid spacing th
needed to fully resolve the continuum limit using the proc
dure developed in this section.

VII. THREE-DIMENSIONAL SIMULATIONS

We have performed simulations for an undercoolingD
50.45 and for an anisotropy ranging fromee50.0066 to
ee50.047. Most of our 3D simulations were performed f
Dx/W050.8 with t(n)5te(n) given by Eq.~115! and the
values ofto , d, andl5le* listed in Table V. For the lowes
anisotropy, we have also carried out simulations w
Dx/W050.6. A smallerDx was necessary in this case
resolve the anisotropy more accurately. The velocity of
tip was measured along thez axis and the simulation wa
stopped after this velocity reached a steady state. As in
2D simulations, we periodically translated the computatio
box a certain distance behind the tip. The convergence of
numerical results with respect to the computational para
eters was checked following the same procedure as in
That is, for each value of the anisotropy we decreasedD, and
henceptip and k tip , until the dimensionless tip velocity did
not change by more than a few percent. A typical conv
gence study is shown in Figs. 15~a! and 15~b! where we
show, respectively, the dimensionless tip velocity and
dimensionless tip radius as a function ofW0 /d0.

A. Tip selection

The operating state of the dendrite can be character
by

s* 5
2Dd0

r tip
2 Vtip

, ~116!

P5
r tipVtip

2D
, ~117!

wheres* is the classic stability parameter that first appea
within the context of marginal stability theory, andP is the
dendrite tip Pe´clet number. Ford050, P is given exactly by
the Ivantsov relation for a paraboloid of revolution@68#

TABLE VI. Comparison of steady-state tip velocities calculat

by 2D phase-field simulations forD50.55 (Ṽtip) and calculated by

the Green function method (Ṽtip
GF) for the sameD. The phase-field

simulations were performed usinge4, te„n…, andle* as input. The
Green function calculation was performed using the grid correc
anisotropyee that corresponds to thee4 value used in the phase
field simulation.

ee Dx/W0 D d0 /W0 Ṽtip Ṽtip
GF % error

0.0066 0.6 3 0.179 0.00221 0.00211 5
0.0171 0.8 3 0.176 0.00638 0.00627 2
0.0265 0.8 2 0.269 0.00968 0.00996 3
0.0369 0.8 1 0.550 0.01309 0.01340 2
0.0470 0.8 2 0.281 0.01728 0.01767 2
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D5PIvexp~PIv!E
PIv

`

dz
exp~2z!

z
. ~118!

In the phase-field simulations, however,r tip andVtip are cal-
culated independently to determineP ands* . The velocity
was calculated, as in 2D~see Sec. V!, from the position of
thec50 point along the growth direction. The details of th
calculation of the curvature are described in Appendix B

A simulated 3D morphology for a high anisotropy (ee
50.047) is shown in Fig. 16. There are six dendrite t
growing along the six@100# directions. Furthermore, eac
dendrite has four ‘‘fins’’ that reflect the underlying cub
anisotropy. This picture should be contrasted with Fig.
which shows the result of a simulation withee50. Without
anisotropy the interface undergoes a series of tip-split
instabilities and no dendrites are formed. These simula
results confirm the essential role of anisotropy in dendr
growth. It is worth noting that it has recently been shown
phase-field simulation that there exist steady-state growth
lutions in 3D for zero anisotropy in the form of triplons@23#.
These solutions are directly analogous to doublons@27,69# in
2D and may therefore exist for arbitrarily smallD, although
this has not yet been demonstrated analytically as in 2D@69#.
From this standpoint, one would be tempted to interpret
simulation of Fig. 17 as showing the early stage of format
of triplons, although a longer run would be necessary to c

FIG. 15. Plots of the dimensionless interface velocity~a! and the
dimensionless tip radius~b! as a function of W0 /d0 for ee

50.0369 andD50.45. The time step ranges fromDt/t050.07 for
the smallest value ofW0 /d0 to Dt/t050.01 for the largest value o
W0 /d0.
s
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firm this supposition. We have not investigated this asp
further here and Figs. 16 and 17 are only intended to sh
that growth morphologies with and without anisotropy a
qualitatively different.

Unlike in 2D, the steady-state growth equations of de
dritic growth in 3D are too difficult to solve numerically b
the boundary integral method for an arbitrary nonaxisymm
ric shape. These equations, however, can be solved usin
so-called axisymmetric approximation@49,50#. This approxi-
mation assumes that the anisotropy and the interface s
z(r ,f) are independent of the polar anglef in thex-y plane
perpendicular to the growth axis. Averaging over this an
yields an effective anisotropy function of the form

as~n!5 ās~11e8@cos4 ū1 3
4 sin4 ū# !, ~119!

where ū is again the angle between the normal direction
the solid-liquid interface and the@100# direction ~growth
axis!. This axisymmetric approximation reduces the 3
steady-state growth problem to a tractable problem tha
two dimensional. The equations can once again be tra
formed into a single integro-differential equation in whic
the interface shapez(r ) appears as an unknown and a
proaches the Ivantsov paraboloid of revolution far from t
tip region @49,70#. This equation is defined by

FIG. 16. Results of a typical 3D phase-field simulation on
30033003300 cubic lattice foree50.047 which shows dendrite
tips growing along the principal̂100& directions. The solid-liquid
boundary shown here corresponds to thec50 surface recon-
structed by reflection about thex5y5z50 planes. The structure is
seen from an angle where all six^100& directions are visible.

FIG. 17. Same as Fig. 9 but withee50.0.
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D2Dm5E
0

2p df8

2p E
0

1` r 8dr8

l

exp@~z~r 8!2z~r !2d!/ l #

d
,

~120!

wherel 52D/V is the diffusion length,

d[$r 21r 8222rr 8cos~f2f8!1@z~r 8!2z~r !#2%1/2,

and

Dm52d0@as~n!1]ū
2
as~n!#

zrr

~11zr
2!3/2

2d0@as~n!1cotū] ūas~n!#
zr

~11zr
2!1/2

represents the axisymmetric Gibbs-Thomson shift. The
radius and velocity, obtained by solving Eq.~120!, were used
to calculates* andP. It is worth stressing that we calculat
s* here using the tip radius. To our knowledge all previo
studies have reported values ofs* that are calculated with
the Ivantsov tip radius. We will see below that the nume
cally obtained Pe´clet numberP and the Ivantsov Pe´clet num-
ber PIv defined by Eq.~118! differ significantly, even for
relatively small anisotropies. Hence, for a meaningful co
parison with experiment, care must be taken in definings*
with the actual tip radius. For completeness, we have a
computed s* using the linear axisymmetric solvabilit
theory of Barbieri and Langer@50# that is based on a linear
ization around the Ivantsov paraboloid of revolution. In th
theory,P5PIv , independent of the value of anisotropy.

The results of 3D computations are summarized in Tab
VII and VIII and in Figs. 18 and 19. We also show fo
comparison the results of the numerical solvability theo
@i.e., the numerical solution of Eq.~120!#, and the linear
solvability of Barbieri and Langer@i.e., the analytic solution
of Eq. ~120! with a shape linearized around the Ivants
needle crystal#. We first note that the values ofs* produced
by our simulations are systematically higher than the val
from the numerical solvability theory. For small anisotro
these values are still reasonably close but for anisotro
greater than about 3% the deviation between the phase-
results and the numerical solvability results become sign
cant. Most likely, this does not indicate a breakdown of so

TABLE VII. Dimensionless steady-state tip velocity and tip r

dius (r̃ tip5r tip /d0) calculated by 3D phase-field simulations. Th
relevant computational and material parameters areW051, h(c)
5c, andD50.45. The time step varied fromDt/t050.018 for the
lowest anisotropy value toDt/t050.076 for the highest anisotrop
value.

ee Dx/W0 D d0 /W0 Ṽtip r̃ tip

0.0066 0.6 3 0.179 0.00549 155.3
0.0123 0.8 2 0.261 0.00925 77.93
0.0171 0.8 2 0.264 0.0121 51.23
0.0265 0.8 1.5 0.359 0.0181 26.09
0.0369 0.8 1 0.550 0.0231 13.56
0.0470 0.8 0.5 1.124 0.0297 6.25
ip
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ability theory, but of the axisymmetric approximation. Th
conclusion is supported by the fact that the fourfold dev
tion from a shape of revolution increases in magnitude w
anisotropy~as described below!. This cos4f mode was pre-
viously found to affect very little the value ofs* computed
with a linearized shape for smalle4 @49#. In contrast, our
results indicate that for a surface tension anisotropy lar
than about 3% the amplitude of this mode becomes su
cient to produce a large percental change ins* . We also do
not observe any sidebranching@44,53,57,71# without adding
noise to the phase-field equations. Hence our simulati
rule out the possibility of a dynamical attractor other than
steady-state needle crystal.

The linear axisymmetric theory is seen to break down
much smaller anisotropy. This is because it assumes tha
steady-state shape remains close to the Ivantsov parab
of revolution. Figure 19 shows that the actual Pe´clet number

TABLE VIII. Result of phase-field simulations on a
20032003400 cubic lattice compared to the results of the nume
cal and linear solvability theories forD50.45.A andh characterize
the amplitude of the fourfold symmetry component of the tip m
phology in simulations. Typical runs took 60–140 CPU hours o
DEC-ALPHA 3000-700 workstation and shorter times on a Cra
YMP and a Cray-T3D.

Phase-field simulations Solvability theory

Numerical Linear

ee P s* h A21 P s* PIv s*

0.0066 0.426 0.015 1.78 13.0 0.418 0.0128 0.471 0.01
0.0123 0.360 0.036 1.73 11.3 0.367 0.0329 0.471 0.02
0.0171 0.312 0.063 1.68 10.1 0.324 0.0578 0.471 0.03
0.0265 0.236 0.16 1.62 7.8 0.247 0.142 0.471 0.06
0.0369 0.159 0.47 1.57 5.7 0.172 0.365 0.471 0.08
0.0470 0.093 1.72 1.54 4.0 0.109 1.037 0.471 0.12

FIG. 18. Plot ofs* vs ee for D50.45 showing the results o
phase-field simulations compared to the approximate prediction
the numerical and linear solvability theories. Also plotted are
small D experimental values ofs* for SCN @57# and PVA @54#
using the anisotropy measurements of Ref.@54# for PVA ~filled
diamond! and of Ref.@56# for SCN and PVA~filled squares and
error bars!.
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already starts deviating significantly from its Ivantsov val
PIv at small anisotropy. The predictions of the Pe´clet number
from the numerical solvability theory on the other hand
main relatively accurate over the entire range of anisotro

Figure 18 also shows a comparison between the nume
results and experimental data points for two materials. T
comparison with experiments is limited to pivalic acid a
succinonitrile that are the only pure materials with an und
lying cubic symmetry for which detailed measurements
both anisotropy@53,54,56# ands* @53–55,57# are available.
For a summary of experimental results on other mater
and alloys we refer to Ref.@56#.

There are two anisotropy measurements reported for P
in the literature. However, if we use either the value m
sured by Muscholet al. @56#, or the value measured b
Huang and Glicksman@53#, the measured value ofs*
@54,55# is still much smaller than both the phase-field and
numerical solvability values. A possible explanation for th
discrepancy could be that interface kinetics is playing
essential role in the solidification of PVA. This is support
by the fact thats* was found to depend on the undercooli
in both the experiments@55# and in the phase-field simula
tions for large undercooling@17#. The observed dependenc
@55#, however, does not seem to be sufficient to explain
present discrepancy. A closer examination of kinetic effe
for this material seems warranted.

We can also compare our phase-field results with m
surements in succinonitrile. Glicksman and co-workers m
sureds* both in ground based experiments@53# and under
microgravity conditions@57#, where convection effects ar
minimized. Interestingly, both the ground based and the
crogravity experiments give essentially the same value
s* :s* 50.0192 for terrestrial experiments ands* 50.0196
for microgravity experiments. It should be noted that
thoughs* is nearly identical in both experiments, the v
locities and tip radii differ significantly and it is only th
dimensionless combinations* that is identical. The experi
mental value fors* is approximately 20% larger than th
phase-field values* '0.015 but most of this discrepanc
can be accounted for by the finite Pe´clet number correction
To evaluate this correction, we first note that, in the abse

FIG. 19. Plot ofP vs ee for D50.45 showing the results o
phase-field simulations compared to the approximate prediction
the numerical and linear solvability theories.
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of kinetics,s* depends only one4 andP, and can therefore
be expanded for smallP as

s* ~P,e4!5s* ~0,e4!1
]s*

]P
~0,e4!P1•••. ~121!

This equation can then be used to extract the smallD experi-
mental limit ofs* as long as we know both]s* /]P ands*
at some finiteD. To make use of it, we have calculated th
slope by calculatings* vs P using the numerical axisym
metric solvability code. The results are shown in Fig. 2
They indicate that the finite Pe´clet correction atD50.45
decreasess* by about 15% from its smallD limiting value.
Consequently, the value ofs* obtained in our simulations
should be increased by 15% to compare it with experime
which yields a smallD estimate ofs* >0.017. Furthermore,
the effective anisotropyee50.0066 lies inside the range o
uncertainty of the measured valuee450.005560.0015 for
SCN @56#. Therefore we obtain a reasonably good agreem
with experiment for SCN within the existing uncertainty
the measured value of anisotropy.

B. Tip morphology

Figures 21~b! and 21~d! showc50 contours in the~100!
planes that are equally spaced in thez direction by one tip
radius. Close to the tip the shapes are nearly circular
further behind the tip the contours are clearly noncircular a
the deviation from an axisymmetric shape becomes lar
Comparing Figs. 21~b! and 21~d! also reveals that the non
axisymmetric component of the tip morphology becom
larger for higher anisotropy. To analyze the steady-state m
phology of the dendrite tip we used the Fourier decompo
tion

r 2~f,z!5(
n

An~z!cos4nf, ~122!

of

FIG. 20. Plot ofs* vs P for the numerical axisymmetric solv
ability theory for e450.0066. The solid line is a guide to the ey
and demonstrates that the dependence onP of s* is linear. The
data point with the arrow corresponds to the undercoolingD
50.45 at which the phase-field simulations are performed
shows that this value is approximately 15% smaller than the va
for small undercoolings.
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FIG. 21. Steady-state tip morphology foree50.0123~a! and~b!
and foree50.0470~c! and~d!. ~a! and~c! show the interfaces in the
f50° ~solid line! and f545° ~dash-dotted line! planes, and~b!
and ~d! show interfaces in the~100! planes equally spaced alongz
by one tip radius, with the first plane two tip radii from the tip. Th
Ivantsov parabolaz52r 2/2 ~dashed line!, the solution from the
axisymmetric calculation~dotted line!, and a circle of unit radius
are superimposed in~a! and ~c!. The Fourier amplitudes at two tip
radii behind the tip are in~b! A1(22)50.29,A2(22)50.020, and
A3(22)50.0022, and in~d! A1(22)50.73,A2(22)50.077, and
A3(22)50.0095, illustrating that the tip morphology is dominat
by the fourfold symmetry mode.
wherer is the radial distance from thez axis. Bothr andz
are measured in units ofr tip with the tip atz50. This de-
composition has the advantage that it is general and does
presuppose a particular analytical form to fit the tip sha
The first term in the Fourier decomposition,A0(z), repre-
sents the axisymmetric contribution to the shape. It
proaches a paraboloid of revolution,A0(z)522z, for small
uzu and departs from this shape with increasinguzu. This can
be seen in Figs. 21~a! and 21~c! where we have plotted as
dashed line the Ivantsov paraboloid@r 2(z)522z#, together
with the tip morphologies in the planesf50 ~solid line! and
f545° ~dash-dotted line!. These figures also show that th
departure is more pronounced at larger anisotropy as
would expect.

The modesAn(z) for n>1 are responsible for the non
axisymmetric departure from a shape of revolution. The fi
nonaxisymmetric modeA1(z) was found to be much large
than all the other modes indicating that the shape is do
nated by the cos(4f) term. Furthermore, this mode can b
described for all anisotropies by the power lawA1(z)
5Auzuh. This can be seen in Fig. 22 where we have plot
on a log-log scaleA1(z) vs uzu with uzu ranging from uzu
;0.1r tip to z;5r tip for two different anisotropies. Fo
smallerz, our numerical interpolation is not sufficient to re
solve accurately these amplitudes because the radius o
cross-sectional shape becomes only a few times, or com
rable to, the lattice spacing. However, the analyticity of t
3D tip shape imposes thath→2 in the limit of uzu→0, such
that the behaviorA1(z)5Auzuh cannot strictly extend all the
way toz50. So we expect that there should be, forA1(z), a
crossover from a behavior inuzuh, with hÞ2, to uzu2 very
near the tip. The values ofA and h in Table VIII clearly
show that the amplitude of the fourfold symmetry mode
sensitively dependent on anisotropy, which is, as far as
know, a qualitatively novel aspect of our results. The line
solvability calculation of Ben Amar and Brener@51# and
subsequent refinement by Brener and Melnikov@72# predicts
that for smalle4 the tip morphology should be independe
of anisotropy, withA21512 andh52 for small uzu. The
values of A and h listed in Table VIII indicate that this

FIG. 22. Plot of the coefficients in the Fourier expansion co
ficient A1 vs the distance behind the tipz for two different anisotro-
pies and forD50.45.
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prediction is most likely only valid for values ofe4 which lie
outside the range of experimental interest. This is also c
sistent with the fact that their calculation is only valid in th
limit where s* ;e4

7/4, and that this 7/4 power law scaling
not yet attained at our smallest computed anisotropy.

In Figs. 21~a! and 21~c! we have also plotted as dotte
lines the dendrite shape calculated by the numerical axis
metric approach. As expected this axisymmetric approxim
tion yields a solution that lies in between the shapes in
f50 and f545° planes and that deviates more stron
from the full numerical simulation for higher anisotropies

Experimental data on the tip morphology are limited
NH 4Br @73# and SCN @74#. For NH4Br dendrites it was
found that the tip morphology is indeed well described b
single cos4f mode. For SCN on the other hand, more mod
seem to be necessary to fit the tip morphology which ma
a direct comparison with the numerical values ofh and A
impossible. The origin of this difference, which is potentia
due to noise amplification, remains to be understood.

C. Tail morphology

In a recent paper, Brener has derived a theory of the
shape of 3D needle crystals@52#. His theory is based on th
assumption that the cross sections of 3D steady-state ne
crystals should grow as time-dependent 2D growth sha
away from the tip. With length measured in units ofr tip , his
theory predicts thatuzu;r 5/3 in an intermediate region wher
1!uzu!1/P, the exponent 5/3 having been derived
Almgren et al. for 2D Laplacian growth@75#, anduzu;r , in
the far tail region whereuzu@1/P. In this last region, the 2D
time-dependent interface grows with a constant steady-s
growth velocity that we shall denote here byV2D in order to
distinguish it from the steady-state growth velocity of the 3
needle crystal that we denote byV3D . With these definitions,
Brener’s theory predicts that the tail region is described
the simple relation

r 5Buzu, ~123!

with B5V2D /V3D , this relation being strictly valid forB
!1. In our 3D phase-field computations,D, and thusP are
not quite small enough to distinguish the intermediate reg

FIG. 23. Longitudinal cross section of phase-field simulated
terface in thef50° plane~solid circles! and a linear fit of the tail
shape far behind the tip~solid line! for D50.7 andee50.0269. For
clarity only one out of six symbols is plotted.
n-

-
-
e

a
s
s

il

dle
es

te

y

n

whereuzu;r 5/3. It is, however, possible to distinguish the fa
tail region described by Eq.~123!.

Figure 23 shows an interface in thef50° plane forD
50.7 as solid circles. Far away from the tip it can be se
that the interface approaches a straight line. A linear fit
this tail, shown as a solid line, was found to have a slope
;0.43. To test Eq.~123! we have calculated the velocity o
the 3D dendrite as well as the velocity of the 2D dendri
The values for the dimensionless velocities obtained fr
2D and 3D simulations are given in Table IX. We see th
the ratio of the 2D and 3D velocities is very close to t
slope of the linear fit. In Table IX we also give the results
a simulation forD50.65. Again, the ratio and the slope a
nearly identical, demonstrating that, far behind the tip,
growth in the cross section perpendicular to the growth
rection is effectively 2D.

To illustrate more clearly that the fins in the~100! planes
grow as 2D dendrites, we show in Fig. 24 as solid circ
cuts in the~100! plane of our 3D simulations. The cuts ar
as in Figs. 21~b! and 21~d!, equally spaced along the growt
direction by one tip radius. If the tail shape can be describ
by Eq. ~123! then 3D cuts spaced by one tip radius a
equivalent to 2D interfaces spacedin time by r tip /v2D . Fig-
ure 24 shows that the interface shapes for a 2D simula

TABLE IX. Results of steady-state growth velocities obtain
by 2D (V2D) and 3D (V3D) phase-field simulations as well as th
measured slope obtained by fitting a straight line through the
gitudinal cross section of the 3D needle crystal in the tail reg
~Fig. 23!. Note the excellent agreement between the predicted s
V2D /V3D and the measured slope.

D ee V2D V3D V2D /V3D Slope

0.7 0.0269 0.0450 0.103 0.44 0.43
0.65 0.0269 0.0416 0.105 0.39 0.40

-

FIG. 24. Transverse cross sections of 3D phase-field simul
needle crystal in the~100! plane equally spaced along thez axis
~solid circles! by one 3D tip radiusr tip . Superimposed for compari
son are 2D interfaces~solid lines! obtained by 2D phase-field simu
lations equally spaced in time byr tip /V2D . The 2D time-dependen
simulation uses as input the interface profile and the tempera
field of the 3D cross section closest to the tip in the present fig
Both 3D and 2D simulations are for the same parameters as in F
21~b! and 21~d!. The first interface plotted is;15r tip away from the
tip. For clarity, only one quadrant of the cross section is shown
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for the same computational parameters spaced as desc
above are nearly identical to the 3D cuts. The slight dev
tion of the shapes is due to the fact that the slope is not q
constant yet.

We close this section with a few observations. First, it
somewhat surprising that we observe a linear tail shape
a slope predicted by Eq.~123!, and obtain such a good matc
between 3D cross sections and 2D time-dependent gro
shapes in Fig. 24. This is because Brener’s analogy is str
only valid if V2D /V3D!1, in which case the flux of tempera
ture along the interface becomes negligible. In our simu
tions, this ratio is about 0.4. Apparently, this value is alrea
small enough to suppress any 3D effects for the growth
the fins that already behave as 2D growth shapes. Secon
is unlikely that the linear tail shape will be observed expe
mentally. Most likely, the amplification of thermal noise w
induce sidebranching before the linear regime can
reached. The generation of sidebranches is currently u
investigation by phase-field simulation.

VIII. DISCUSSION

In this paper we have given a detailed exposition o
thin-interface limit of the phase-field equations describ
the crystallization of a pure melt where the interface thic
ness is assumed to be small compared to the mesoscale
solidification pattern, but non-vanishing. We have presen
simulation results in 1D, 2D, and 3D, that demonstrate h
this limit can be implemented to obtain accurate quantita
solutions of the time-dependent free-boundary proble
Computations in 1D and 2D have mainly been used
benchmark our method against exact predictions of the c
sical sharp-interface theory, whereas 3D simulations w
performed to test the validity of solvability theory and ga
new insights into the factors that determine the shape
operating state of actual dendrites observed in experime

Two aspects of the asymptotics are worth emphasizin
~i! By a suitable choice of computational parameters

can simulate the solidification of a pure melt in the abse
of kinetics. This, in turn, makes it possible to simulate t
important limit where kinetic effects at the interface are ne
ligible.

~ii ! We can perform simulations for a larger interfa
thickness to capillary length ratioW/d0 than was possible
before. Since the computational time ind dimensions can be
shown to scale as;(W/d0)2(d12), an increase inW/d0
leads to an enormous gain in computational efficiency.

As a first test case, we used the method to model
growth of a planar front for undercoolingsD.1. The solu-
tion of this problem is well known analytically and the v
locity is only a function ofD and the kinetic parameterb.
Phase-field simulations that exploit the thin-interface lim
were found to converge well to the results of the class
sharp-interface theory, and more efficiently than with t
standard asymptotics of the phase-field model. As a sec
and less trivial test case, we showed that the phase-
method can yield accurate predictions of the operating s
of the 2D dendrite tip. For undercoolings as low asD
50.25 we were able to perform simulations with zero kin
ics that were converged in numerical parameters. This c
vergence was achieved by decreasingW/d0 until the dimen-
bed
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sionless velocity did not change by more than a few perc
These simulations provided us with both the velocity and
radius of the dendrite tip. It should be emphasized that
contrast to previous phase-field studies, our results w
compared directly to exact benchmarks of solvability theo
obtained independently by Green’s function method b
with and without interface kinetics. The comparisons show
that the phase-field method was able to produce the cor
velocities and tip radii with a relative error,5%. In addi-
tion, we found that the computation time decreased dram
cally as the ratioW/d0 was increased.

Our simulations were performed without employing mo
involved numerical techniques such as adaptive grids.
course, the implementation of such techniques will speed
our calculations even further. This is especially the case
low undercoolings where the diffusion length becomes
tremely large and the calculation of the diffusion field b
comes very costly.

Our asymptotics have enabled us to perform quantita
simulations in 3D. To reduce the computation time even f
ther than permitted by these asymptotics, we have use
somewhat larger grid spacingDx than needed to fully re-
solve the continuum limit of the phase-field equations. T
small surface tension grid anisotropy introduced by usin
larger spacing~about 0.3% forDx/W050.8) was calculated
by comparing the equilibrium 3D crystal shape produced
the phase-field model with the known analytic expression
a sharp interface. A methodology was also developed to
culate the grid-induced kinetic anisotropy and determ
model parameters for which the kinetic coefficient vanis
These two steps allowed us to perform simulations of d
dritic growth that are converged in computational para
eters. This convergence was achieved as in 2D by decrea
W/d0 until s* did not change by more than 10%.

We used our simulations to critically test microscop
solvability theory. We first compared our results to the line
axisymmetric solvability theory of Barbieri and Langer@50#
which assumes that the underlying shape of the dendrit
the Ivantsov paraboloid and linearizes around that shape.
showed that this theory breaks down at large anisotrop
and is presumably accurate for very small anisotropies o
Next, we compared our results to the nonlinear axisymme
solvability theory which assumes that the dendrite is axisy
metric. This assumption leads to an effectively tw
dimensional problem that can be solved numerically. O
simulations showed that this numerical solvability theo
breaks down for much larger values of anisotropies. For v
ues smaller than 3% the discrepancy between the simulat
and the numerical solvability theory is approximately 30%

In addition to the velocity and the tip radius of the 3
dendrite, we have also calculated the tip morphology.
found that for all values of anisotropy studied here the m
phology is dominated by the fourfold mode and that the
terface shape can be adequately represented by

r 2~f,z!5A0~z!1Auzuhcos~4f!1•••. ~124!

The values ofA andh on the other hand are strongly depe
dent on the anisotropy. A recent analytical linear solvabil
calculation by Ben Amar and Brener@51# predicts that both
A andh should be independent of anisotropy in the limit
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small e4. Our results suggest that the range of validity
their approximate theory lies outside the range of values
e4 that we simulated here, and at the margin of what
experimentally measurable.

We compared our simulations with values fors* reported
in the experimental literature. For PVA the agreement
tween theory and experiment remains very poor@54,55#.
There is a large discrepancy between the experimental va
of PVA and the ones obtained from our phase-field simu
tions as well as the numerical solvability theory. The m
likely explanation for this discrepancy is the dominant ro
of interface kinetics in this material that remains to be mo
eled quantitatively in 3D.

The comparison between our results and SCN is m
more favorable. The smallest anisotropy value used in
study lies within the range of uncertainty of the experimen
value for e4. Our numerical value ofs* is approximately
20% lower than the experimental value. To be able to p
form our simulations the undercooling was chosen sign
cantly higher than in experiments. This difference in und
cooling between the simulation and the experiment acco
for most of the discrepancy in the value ofs* . Therefore it
is fair to argue that agreement between the experime
value for SCN and the numerical value is good.

Finally, we analyzed the shape of the dendrite tail
behind the tip. We find that the tail, at distances larger th
the diffusion length, is well described by the linear relatio
ship

r 5
V2D

V3D
uzu, ~125!

where V2D , V3D are, respectively, the 2D and 3D stead
state dendrite tip velocities at the same undercooling. T
means that the evolution in space of transverse cross sec
of 3D steady-state needle crystals, with increasing dista
behind the tip, is described by the evolution in time of a 2
growth shape. This result is in good agreement with the
cent analytical theory of Brener@52#.

Our results in 3D leave little doubt about the validity
microscopic solvability theory in describing needle cryst
computed with a phase-field model and yield a relativ
good quantitative agreement with experiment for SCN. C
tion, however, is still needed in applying this theory to e
periments until a proper explanation of the disagreement
tween theory and experiment, most likely due to kine
effects, is obtained for PVA. Our simulations demonstr
the critical role of anisotropy in the selection of the operat
state of the dendrite tip. The values ofs* are reasonably
close to the axisymmetric solvability theory, at least f
small anisotropy. For higher anisotropy (e4.3%), thedis-
crepancy between our simulations and the axisymme
theory increases. However, this is not due to a failure
microscopic theory but due to the axisymmetric approxim
tion.

The asymptotics we have presented in this paper can
applied to a variety of problems. We are currently includi
thermal fluctuations quantitatively in the phase-field mo
to investigate noise-induced sidebranching. We have also
tended the present asymptotics to the directional solidifi
f
of
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tion of a dilute binary alloy. This makes it possible to inve
tigate a number of interesting microstructural patte
formation issues.
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APPENDIX A: ASYMPTOTICS OF THE THIN-INTERFACE
LIMIT

In this appendix, we show how the Gibbs-Thomson co
dition obtained in Sec. III can be rederived from a match
asymptotic expansion that treatsl as a small parameter. W
start by rewriting the phase-field equations by making
dependence onl explicit, i.e., by substitutingW5ld0 /a1

andt5l2b0d0 /a1
2, which yields

l2
b0d0

a1
2

] tc5l2
d0

2

a1
2
¹2c2 f c2lgcu, ~A1!

] tu5D¹2u1] th/2. ~A2!

We then look for solutions of the form

u5u01lu11l2u21•••, ~A3!

ũ5 ũ01l ũ11l2ũ21••• ~A4!

in the inner and outer regions, respectively, with a simi
expansion forc in both regions. In the outer region, all th
ũ j ( j 50,1,2, . . . ) simply obey the diffusion equation] t ũ j

5D¹2ũ j since the phase-fieldc is constant. In the inner
region, the analog of Eqs.~31! and~32!, rewritten in terms of
the inner variableh[(j3 /l)(a1 /d0), become

lFb0

a1
V1

d0

a1
S 1

R1
1

1

R2
D G]hc1]h

2c2 f c2lgcu50,

~A5!

ld0

a1
FV1DS 1

R1
1

1

R2
D G]hu1D]h

2u2
ld0

a1
V]hh/250,

~A6!

where we have neglected the contributions of the partial
rivatives] tc and] tu evaluated at fixedh that turn out to be
unimportant at the end of the calculation. Substituting E
~A3! and~A4! into Eqs.~A5! and~A6!, we recover at zeroth
order the stationary interface profilec0(h), defined by Eq.
~35!, and u05const. For all higher orders inl, Eq. ~A6!
yields a linear equationLc j5F j whereL is the linear op-
erator defined by Eq.~38!. SinceL is self-adjoint and satis-
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fiesL]hc050, there is at each order inl a solvability con-
dition for the existence of a nontrivial solutionc j , given by

E
2`

1`

dhF j]hc050. ~A7!

The rest of the calculation is straightforward. At first ord
( j 51) Eq. ~A7! yields

u052d0S 1

R1
1

1

R2
D2b0V, ~A8!

which is the condition obtained previously by Caginalp@32#.
At second order (j 52), we obtain

F252Fb0

a1
V1

d0

a1
S 1

R1
1

1

R2
D G]hc11

f ccc
0

2
c1

21gcc
0 c1u0

1gc
0u1 , ~A9!

where

u1 5 ū11Ah1
d0V

2Da1
E

0

h
dh8h0 ~A10!

is obtained by solving Eq.~A6! at first order inl and the
constantū1 is determined by Eq.~A7!. As before, iff andg

are even and odd functions ofc, respectively,ū1 does not
depend onA. In addition, it is easy to verify that all the term
on the right-hand side of Eq.~A9!, except the last one, ar
proportional to odd functions ofh sincec1(h) is an even
function ofh. Therefore they give vanishing contributions
the solvability condition of Eq.~A6! at second order inl.
Finally, matching inner and outer solutions up to first ord
in l we obtain the standard heat conservation condition,
gether with the interface condition

ui[ lim
j3→06

@ ũ0~j3!1l ũ1~j3!#52d0S 1

R1
1

1

R2
D

2b0F12l
a2d0

Db0
GV, ~A11!
a-

R.

ys
r

r
-

which is easily seen to be identical to Eq.~57! derived in
Sec. III A in an asymptotic expansion that treatsp as a small
parameter. Note that, although the results are the same
solvability conditions that yield the correction to the kinet
coefficient do not have identical forms because they app
at different orders in the two asymptotic expansions@i.e., Eq.
~41! in Sec. III A and Eq.~A7! for j 52 here#.

APPENDIX B: CALCULATION OF THE TIP RADIUS

The tip radius of the dendrite growing along thez axis
was calculated in they-z (f50°) plane. The expression fo
the curvature of the interface defined byc50 is given at the
tip by

k tip5
1

r tip
5

]y
2c~0,0,ztip!

]zc~0,0,ztip!
. ~B1!

For the typical grid spacingDx/W050.8 used in our 3D
computations, evaluating the derivatives in the express
above directly with the values ofc on the lattice points
would introduce a large error ink tip , especially since the tip
does not usually coincide with a lattice point. For this reas
we calculated these derivatives by interpolation.

We first fitted the functionc(0,0,z) in the neighborhood
of the tip using a fourth-order polynomialc̃(z). We used the
five vertical lattice points closest to the tip along thez axis at
x5y50. This allowed us to calculate the tip position defin
by c̃(ztip)50, and then]zc(0,0,ztip)5dc̃(z)/dzuz5ztip

.

Let us denote thez coordinates of the five points used
fit c̃(z) by zn for nP@1,5#. We then fitted the functions
c(0,y,zn) using fourth-order polynomialsc̃n(y) for n
P@1,5#. For eachn, we performed this fit using the five
horizontal lattice points defined byc(0,6mDx,zn) for m
P@0,2# @where c(0,mDx,zn)5c(0,2mDx,zn) by symme-
try#. We then calculated]y

2c(0,0,zn)5d2c̃n(y)/dy2uy50. Fi-
nally, we fitted the function]y

2c(0,0,z) using a fourth-order
polynomial through these five points and used this poly
mial to calculate]y

2c(0,0,ztip).
s.
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