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A phase field model is used to numerically simulate the solidification of a pure material. We employ it to compute 
growth into an undercooled liquid for a one-dimensional spherically symmetric geometry and a planar two-dimensional 
rectangular region. The phase field model equations are solved using finite difference techniques on a uniform mesh. 
For the growth of a sphere, the solutions from the phase field equations for sufficiently small interface widths are in 
good agreement with a numerical solution to the classical sharp interface model obtained using a Green's function 
approach. In two dimensions, we simulate dendritic growth of nickel with four-fold anisotropy and investigate the effect 
of the level of anisotropy on the growth of a dendrite. The quantitative behavior of the phase field model is evaluated 
for varying interface thickness and spatial and temporal resolution. We find quantitatively that the results depend 
on the interface thickness and with the simple numerical scheme employed it is not practical to do computations 
with an interface that is sufficiently thin for the numerical solution to accurately represent a sharp interface model. 
However, even with a relatively thick interface the results from the phase field model show many of the features of 
dendritic growth and they are in surprisingly good quantitative agreement with the Ivantsov solution and microscopic 
solvability theory. 

1. Introduction 

Recently Kobayashi [ 1-3 ] reported compu- 
tations of the unsteady phase field equations in 
two and three spatial dimensions, which clearly 
showed the evolution of solid dendritic struc- 
tures into an undercooled melt. Other realistic 
features of dendritic growth were also exhibited 
in these computations, such as tertiary side arm 
formation, side arm coarsening well away from 
the dendrite tip, and the inclusion of liquid 
droplets in the solid phase. This, to our knowl- 
edge, is the first time that a computation of solid- 
ification has been able to show dendritic growth 
with the above features. Kobayashi's work is a 
qualitative demonstration of the possible utility 
of phase field models of solidification as a com- 
putational tool for modeling complicated, realis- 
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tic solid/liquid interfaces. However, he did not 
systematically investigate such important issues 
as the accuracy of his numerical solutions, their 
relation to the various classical formulations of 
solidification, such as the Stefan problem, or 
whether his simulations were conducted in a 
parameter regime that corresponded to realistic 
growth conditions of an actual material. 

It is the focus of this paper to address these is- 
sues, and critically assess phase field models as 
a viable computational technique. We go on to 
compare the results of our computations of den- 
dritic growth using a phase field model with cur- 
rent theories of dendrite tip selection, in particu- 
lar, the Ivantsov solution, marginal stability the- 
ory, and microscopic solvability theory. We also 
address the issue of side arm formation. In con- 
trast to Kobayashi, our work represents a quanti- 
tative evaluation of phase field models, as well as 
the theories of dendrite tip selection mentioned 
above. 

Phase field models of solidification, since 
their invention by Langer, see [4], following an 
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adaptation of  the Model C proposed by Halperin 
et al. [5], and also independently by Collins and 
Levine [6], have been subject to development 
and rigorous mathematical analysis by Caginalp 
[7,8]. Only recently has computer technology 
advanced sufficiently that it is now possible to 
numerically integrate the unsteady phase field 
equations, in realistic configurations. An early 
computation is due to Smith [9], and more re- 
cently accurate calculations in one spatial di- 
mension have been obtained by Caginalp and 
Socolovsky [ 10] and Lowen et al. [ 1 1 ]. The ad- 
vantage of the phase field formulation of  solidi- 
fication, which is described in section 2, is that 
no distinction is made between the solid, liquid 
and interface. This allows the whole domain to 
be treated in the same way numerically; the in- 
terface is not tracked but given implicitly by the 
level set of  a scalar function of time and space, 
the so-called phase field. In essence, the classical 
formulation of a free boundary problem is re- 
placed by a pair of  nonlinear reaction-diffusion 
equations for the temperature and phase field. 
This approach allows the computation of real- 
istic complicated interfacial structures whose 
connectedness changes in time. Numerical treat- 
ments of  free boundary problems, using bound- 
ary integral or domain transformation methods 
encounter great difficulties in these situations. 

Experiments on the free growth of  dendrites 
by, for example, Glicksman et al. [12], show 
that the dendrite tip selects an operating state, 
as characterized by the tip velocity, v, and ra- 
dius of curvature, r, dependent on the under- 
cooling of  the melt, zXT. Ivantsov's theory [13] 
provides a local model of  a dendrite tip, which is 
represented by a parabola, solidifying with con- 
stant velocity into an infinite melt. This theory 
determines the Peclet number, ;P = 2vr /x ,  as 
a function of  the undercooling parameter, z/ = 
cAT~L, where c is the specific heat, ~c is the ther- 
mal diffusivity, and L is the latent heat per unit 
volume. Another independent relation between 
v and r is required to determine them uniquely. 
A resolution of  this indeterminacy was sought 

by introducing surface energy into the theory, 
which introduces an additional length scale, do 
= a/L ,  the capillary length into the problem, 
where a is the surface energy. This approach re- 
sulted in marginal stability theory, originally due 
to Oldfield [14], which predicts the other rela- 
tion to be ~* (=  2Kdo/vr 2) = 0.0192. This the- 
ory is ad hoc and based on the notion that the 
tip exists in a state of marginal stability related 
to the critical radius for growth of a solid sphere 
or cylinder into an undercooled melt. 

In contrast, an alternate mathematical treat- 
ment incorporating the surface energy is known 
as microscopic solvability theory. It is reviewed 
by Kessler et al. [ 15 ] and Pomeau and Ben Amar 
[16]. This theory indicates that surface energy 
in itself is not sufficient, but that anisotropy of 
surface energy is required to achieve a steady 
stable tip, and a* = O(~27/4) as 7 ~ 0, where 7 
is the surface tension anisotropy parameter, de- 
fined in two-dimensions by a o~ 1 + 7cos(k0),  
where 0 is the angle of  the interface to a given 
direction and k is an integer that characterizes 
the symmetry of the crystal. Unfortunately, the 
physical basis for this is unclear, the theory rely- 
ing on sophisticated formal asymptotic methods. 
To date, to our knowledge, there is scant inde- 
pendent confirmation of  microscopic solvability 
theory against numerical simulation or experi- 
ments. Meiron [ 17] showed from a numerical 
boundary integral formulation, that anisotropy 
is necessary for stable, steady growth of  the tip 
of  a needle crystal. Saito et al. [181 conducted 
a numerical simulation on a quasi-steady model 
using a Greens function technique, and were able 
to roughly confirm the predictions of  the theory. 
Experimental confirmation, the ultimate test of 
such a theory, is much less conclusive. This is 
because the anisotropy in the surface energy of 
most materials is difficult to measure and thus in 
many cases unknown. Also microscopic solvabil- 
ity theory is most well-developed for two dimen- 
sions, but experimentally dendrites are usually 
three dimensional. Ben Amar [19] has shown 
that by choosing the best value of  the anisotropy 
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parameter the experimental results of Willnecker 
et al. [20] could be adequately described over 
a wide range of values of the dimensionless un- 
dercooling parameter. However, careful experi- 
ments on pivalic acid, camphene and succinon- 
itrile by Rubinstein and Glicksman [21,22] do 
not support microscopic solvability theory, in 
particular, they do not confirm the dependence 
0"* = O(~ 7/4) as ~ ~ 0. 

In section 2 we briefly introduce a new phase 
field model for solidification based on an en- 
tropy functional formulation. In section 3 we 
describe the results of our numerical integra- 
tion of the phase field equations in a spheri- 
cally symmetric geometry, and quantitatively 
compare our results to an accurate numerical 
solution of the corresponding free-boundary 
problem based on a Greens function technique 
due to Schaefer and Glicksman [23]. In section 
4, we describe the numerical method used to 
solve the unsteady phase field equations in a 
planar two dimensional geometry and make a 
quantitative assessment of it. We compare our 
results to both microscopic solvability theory 
and marginal stability theory, as well as discuss 
side-arm formation. 

Our results in the case of the spherically sym- 
metric geometry indicate that the numerical so- 
lution of  the phase field equations converge to 
the results of the corresponding free-boundary 
problem as the interface thickness is reduced 
providing that the interface is adequately re- 
solved. In the two-dimensional planar geome- 
try, the validation of the numerical solution of 
the phase field equations is much more difficult 
to perform. This is because adequate resolution 
of  the interfacial layer in a realistic parameter 
range is difficult to achieve. Qualitatively, our 
numerical solutions show dendrite formation 
for growth into an undercooled melt, and show 
the importance of  the level of surface tension 
anisotropy. We find reasonable quantitative 
agreement to the Ivantsov solution and to mi- 
croscopic solvability theory for a fixed value of 
the interface thickness; however, we show that 

the results are dependent on the interface thick- 
ness. This, we believe, provides the main ob- 
stacle to the use of phase field methods for the 
accurate computation of  complex solid/liquid 
interfaces for realistic growth configurations 
in more than one space dimension. Neverthe- 
less, the phase field method produces many of 
the qualitative features observed in real crystal 
growth, and with further development of the 
numerical solution techniques may provide the 
best approach for simulating dendritic growth. 

2. The governing equations 

Phase field models of the solidification of a 
pure material are based on a Landau-Ginzberg 
free-energy functional: 

F = / [ f (q~ ,  T) + ½(2(V0)2] d£2, 
(2 

(1) 

where g2 is the region occupied by the system, 
0(x ,  t) is the phase-field, T(x, t) is the temper- 
ature and e is a parameter which is constant for 
an isotropic material. The free-energy density 
f (0, T) is a double well with respect to 4). Vari- 
ous choices for the precise form of f have been 
suggested, the most studied of which is 

f(qS, T) = ~a(1 - 0 2 ) 2  _ (T - TM)q~, (2) 

where a is a positive constant, and TM is the 
melting temperature of  the material. The solid 
and liquid phases are represented by q~ in the 
neighborhood o f - 1  and + 1 respectively. An 
alternative choice for f has been proposed by 
Kobayashi [2 ]: 

f ((9, T) = W / ( ( ~ -  1) 

0 

× (¢-  ½- f l [T -TMI )d¢ ,  (3) 
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where W is a constant and fl is a monotonic 
function o f T -  TM, with Jfl[ < ½ and fl(0) = 0. 
This choice has the advantage over eq. (2) that 
the liquid and solid states are represented by 4~ 
exactly equal to zero and unity respectively. 

In both cases the free energy eq. (1) is used 
to derive a kinetic equation for the phase field 
by requiring that it evolves in a manner such 
that total free energy 5 r decreases monotonically 
in time. The simplest choice is made consistent 
with this requirement: 

4~, :~ - - -  (4) 
OrS" 

To this is appended the heat equation modified 
to take account of  the liberation of  latent heat, 
by the inclusion of  an appropriate source term: 

0--7- d- K = V 2 T ,  (5) 

which provides an equation for the temperature, 
where K is a constant proportional to the la- 
tent heat per unit volume. Typically, eq. (5) is 
not derived from basic thermodynamic princi- 
ples with specific consideration of the form of 
the free-energy functional eq. (1), so it is not 
clear that the solution of  the equations eq. (4) 
and eq. (5) will ensure that f is monotonically 
decreasing in time. Penrose and Fife [24] have 
addressed this question by employing the ap- 
propriate thermodynamic potential to this non- 
isothermal situation, namely an entropy func- 
tional. From this they derived, in a consistent 
manner, the phase field equations when the free 
energy density is given by eq. (2). To our knowl- 
edge, the phase field model based on the free 
energy density given by eq. (3) has not been 
placed in a consistent thermodynamic setting in 
the same way. However, this free energy has the 
advantage that, because the two states, solid and 
liquid, are given by fixed values o f G  0 and 1, the 
latent heat released through the source term in 
the modified heat eq. (5) is correctly accounted 
for in a numerical computation of  the phase field 

equations given by eq. (4) and eq. (5). This is 
not true with the choice for f given by eq. (2) as 
the values of ~b representing the solid and liquid 
states depend upon T and a. 

Another phase field model which combines 
the advantages of both the above models, that 
is, one that is thermodynamically consistent and 
represents the solid by ~b = 0 and the liquid by 
q~ = 1, has been suggested and is discussed at 
length'in [25]. This new model results in the 
following dimensionless governing equations for 
the phase field and temperature: 

4 2  
e 0O 

--q~(1 - q)) [c~ - ½ + 30~aAu~b(1 - 6)] 
m o t  

+ g2V2 G (6) 

Ou i , 
o--7 + 3 p (6) : V2u, (7) 

where p(~b) = 4)3(10 - 15(~ + 6~/~ 2) and prime 
denotes differentiation. The solution of  these 
model equations results in the total dimension- 
less entropy of the system S, given by 

8 = f [S(+,U)- ½g2(Vt/.~)2)] d~r~, (8) 

increasing monotonically in time, with the di- 
mensionless entropy density given by 

s ( ~ , u )  = 

0 

+ ~ A u p  '(~) ] d~. (9) 

Here, length has been scaled on some reference 
length scale w of say the dimensions of  the do- 
main, time on the corresponding thermal diffu- 
sion time w2pc, where K is the thermal diffusiv- 
ity, and temperature by putting T -- TM + ATu, 
where AT is a reference temperature difference 
(such as, between the melting temperature and 
the temperature at the boundary of  the domain). 

The present phase field model is characterized 
by four dimensionless parameters. The parame- 
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ter LJ is the dimensionless undercooling, defined 
a s  

cAT 
,~ - , ( l O )  

L 

where c is the specific heat and L is the latent 
heat per unit volume. In [25], it is shown how 
the remaining three constants are related to the 
physical parameters which characterize the in- 
terface dynamics (i.e., interfacial energy, a, and 
mobility,/~) and to an estimate of the interface 
thickness, 6, which is a consequence of the phase 
field approach; the following definitions relate 
the remaining model parameters to the physical 
constants: 

V'-~w L 2 
a - ( I I )  

12COTs' 

~a Tm 
m -- teL ' (12) 

and 

m defined above are assumed to be order one, 
we recover the sharp interface model to leading 
order 

O--u-u = v a u ,  (14) 
Or 

with interfacial boundary conditions 

liquid 
o__U_U 1 

_____ - -  - - V n ,  

(9 n i solid A 
(15) 

u = - F ( ~ + E ) ,  (16) 

where F = aTm/(wLAT) is the dimensionless 
capillary length, Vn is the dimensionless normal 
velocity of the interface (into the liquid) and E 
is the curvature. The conservation of heat across 
the solid-liquid interface allowing for latent heat 
production is represented by eq. (15) and the 
Gibbs-Thomson equation modified to account 
for interface kinetics by eq. (16). 

6 
= --.  (13) 

Once the characteristic length scale w has been 
chosen, knowledge of the physical properties 
leaves one degree of freedom, namely ~, which 
then is used to set the interface thickness. It is 
expected that in order to model the physical 
behavior correctly, the interface thickness must 
be sufficiently small compared to the interfacial 
macrostructures that we wish to model; how- 
ever, from a computational viewpoint, it is de- 
sirable for the interface thickness to be as large 
as possible in order that accurate solution of the 
phase field equations can be obtained for prac- 
tical computational effort. This is one of the 
key issues to be addressed by the computations 
presented here. 

From eq. (13) it is clear that the limit ~" -~ 0 
corresponds to the interfacial thickness tending 
to zero. Specifically, in [25] we show that if we 
take the limit ~ ~ 0, where the constants c~ and 

3. The growth of a sphere 

Our first test of the phase field model is to 
compare it to an accurate numerical solution of 
the growth of a sphere into an undercooled melt 
originally described in Schaefer and Glicksman 
[23]. The growth of the sphere is strongly in- 
fluenced by curvature, kinetic, and heat flow ef- 
fects, thus providing the ingredients for a severe 
test of the correspondence between sharp inter- 
face and phase field descriptions in the limit ~ 
0. 

Schaefer and Glicksman [23] solved the 
sharp interface problem eq. (14), eq. ( 15 ), and 
eq. (16), recovered in the limit ~ -~ 0, in a 
spherically symmetric geometry using a Greens 
function method. We have used the same tech- 
nique here modifying slightly their normaliza- 
tion to be consistent with that we use here in 
the phase field model. The initial data corre- 
sponded to a solid sphere of radius P0 chosen 
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to be 10% greater than the equilibrium radius 
p*. In our non-dimensionalization, we choose 
p* as the reference length scale w, and AT to be 
equal to the undercooling (taken to be positive). 
Thus, initially we set u = -1 everywhere. The 
dimensionless equilibrium radius is given from 
eq. (16) as p* = 1/(3v~c~A), and because we 
choose p* = 1 this gives c~ = 1 / (3v~A) .  Also, 
we introduce the parameter 

/taTM 
~ -  2 • L '  (17) 

which represents the mobility of the interface 
and is the same dimensionless group employed 
in [23], and we note that m = 2~. The nondi- 
mensional boundary condition for the interfacial 
temperature eq. (16) is given in terms of ~ as 

dp -4# (u + p )  (18) --~-= 

3.1. Numerical method for solution of the sharp 
interface problem 

As the sphere grows, heat is emitted from its 
surface at a rate proportional to the latent heat 
and to the growth rate. The resulting temperature 
field, and in particular the surface temperature 
of the growing sphere at r = p (r), is calculated 
by a Green's function integral: 

u(p,r) -1 + f G(p,p'(r ') ,r,  ,, _.dP'" , r ) -~Tt o r  , 

0 
(19) 

where for a sphere 

r ! 
G(r,r', r, r') = 

2rv/n (r - r ') 

x [ e x p ( - 1 ~ - ~ - - - ~ 2  j ( r - r ' ) 2  "~ 

{_ (r + r,)2 )] 
exp \ (20) 

The radius of the sphere is given simply by 

alp' 
p(r) = Po + -~dr ' .  

0 

(21) 

The numerical procedure used to increment the 
interface position Pn and temperature un at the 
nth time step (r = rn = nAT) to the (n + 1)th 
time step ( r ,+l  = rn + AT) was as follows: 
(i) Compute dp/dr  at r = r~, denoted by / i , ,  
from eq. (18). 
(it) Compute Pn+t from eq. (21) employing a 
backward difference, i.e., P,+t = Pn + pnAr. 
(iii) Update the interfacial temperature from 
eq. (19) by 

u(pn, nat) = Ar ~ Pi-lG(Pn, Pi, nAT, tar). 
i = 1  

An alternative quadrature formula of the Greens 
function integral in step 3 was also tried using 
only Pi- 1 on each time interval and was found to 
converge much less rapidly. For the conditions 
considered in this paper, calculations were car- 
ried out using a range of values of the time step. 
It was found that for time steps smaller than a 
value, which depends on A and #, the results 
agreed within 0.1%. 

3.2. Numerical method for the phase field model 

We employed a finite difference scheme to 
solve the phase field equations eq. (6) and 
eq. (7) expressed in a spherically symmetric 
geometry in which the sole spatial variable is r, 
the radial distance. Second-order central differ- 
ences were used to discretize the Laplacian op- 
erator on a uniform spatial mesh for the domain 
0 < r < R, with N + 1 nodes. Unlike the Greens 
function approach described above the phase 
field computation requires a finite domain and 
thus we must be careful in choosing appropriate 
outer boundary conditions at r = R. We chose 
them to be 

Ou u + l  
o--7 + R _ 0 ,  
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and 

04) 0 at r R, (22) 
Or 

which is consistent with assuming a quasi-static 
approximation for the heat diffusion equation 
in the far field. The phase field is simply equal 
to unity in the far field. At the origin the co- 
ordinate singularity in the Laplacian operator 
was avoided by employing a local form for the 
solution as described in Smith [9] and Neu- 
mann boundary conditions. The solution was 
advanced in time using a second-order Crank- 
Nicholson scheme for the Laplacian terms and a 
backward difference for the latent heat produc- 
tion term in the modified heat equation. Specif- 
ically, the solution was advanced a single time 
step in the following manner: 
(i) Update the phase field by solving the tridi- 
agonal system, 

= + 

(ii) Update the temperature by solving the tridi- 
agonal system, 

= t ( ¢ , " ) .  

Here q~n and ~ r"+l are the discrete approxi- 
mations to 4) and u, TO+ etc represent the tridi- 
agonal matrices that result from the temporal- 
spatial discretization, si (q~n ) = s~ (~n,  ~j~ ) 
and li(~l) n ) = / ( l i~  n + l  ) -- l ( ~  n ).  The compu- 

tations were conducted on a Cray-YMP and 
the solution of the tridiagonal systems was con- 
ducted using the Cray library routine TRID 
which employs cyclic reduction. The code was 
well vectorized and achieved in excess of 200 
MFLOPS on a single processor. 

3.3. Comparison of the two methods 

We conducted calculations using both meth- 
ods for an undercooling of 0.5 and two different 
values of the mobility, ~ = 0.05 and 1.0. The 

most comprehensive set of computations was 
conducted for ~ = 1.0. For this case in conduct- 
ing the computations on the phase field model, 
we used five different values of ~" (0.1, 0.075, 
0.05, 0.02 and 0.01 ) and five different grids with 
mesh spacings Ar (0.001,0.002,0.01,0.02 and 
0.1 ) for each value of ~'. The time step was taken 
to be 10 -4. It was found that there was a critical 
value of the time step, that was apparently insen- 
sitive to the mesh size, above which the numeri- 
cal scheme was unstable, despite the implicit dis- 
cretization of the diffusion operator. We ascribe 
this to the explicit discretization of the source 
terms in the phase field and heat equation. It was 
found that invoking the outer boundary condi- 
tion at r = 10 was sufficient for approximating 
an unbounded domain. 

For the case ~ = 0.05, which is a more realistic 
value for a supercooled pure metal, calculations 
were only performed on the phase field model 
for ~ = 0.01, with Ar = 0.05, and Az = 10 - 3 ,  

for which we were able to obtain excellent agree- 
ment with the numerically computed solution 
of the classical formulation, but with the outer 
boundary placed further away at r = 20. We at- 
tribute this to the increased communication by 
the temperature field to the far-field in this case 
of a lower interracial mobility where the inter- 
face motion is relatively sluggish relative to the 
thermal diffusion time. Henceforth, we restrict 
our discussion to the case ~ = 1.0. 

On the finest grids excellent agreement was ob- 
tained between the two procedures as shown in 
fig. 1 for Ar = 0.001 and ? = 0.01. It was found 
that the numerical solution exhibited a tempo- 
ral oscillation when the mesh was too coarse. In 
all except one of these cases the breakdown cor- 
responded to values of "(/Ar (a measure of the 
resolution of the interface by the computational 
mesh) less than or equal to unity. In particular, 
for a fixed value of ~-, on increasing the mesh 
spacing the numerical instability first manifested 
itself as a significant oscillation in the interface 
velocity; at larger values of Ar it was apparent 
as a significant oscillation in the surface temper- 
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Table 1 
The relative difference in the surface temperature  calculated by the two methods over an interval of  12 time units expressed 
as a percentage. The entries in italics indicate that the solution was subject to a numerical oscillatory instability. Those in bold 
were employed in the curve fitting discussed in section 3.3; in particular, the emboldened entries in the columns were fitted 
as -0 .748337 - 0.00153s - 0.52s 2, for ~" = 0.02; -3 .34638 - 0.000375s - 0.36s 2, for ~ = 0.05; 5.21304 - 0.00462s - 0.22s 2, 
for ~" = 0.075; -7 .05878  - 0.0330495s + 0.284232s 2, for ~" = 0.1, where s -- Ar/~. 

Ar ~ = 0.01 ~ = 0.02 ~ = 0.05 ~ = 0.075 ~ = 0.1 

0.001 1.520 -0.7502 -3 .347  -5 .213 -7 .058 

0.002 1.504 -0 .7540 -3 .347  -5 .213 -7 .058 

O.Ol 1.009 -0 .8753 -3.361 -5.2173 -7 .060  

0.02 92.44 - 1.2452 -3 .404  -5 .2300 -7 .063 

0. I 91.49 ~149 -3 .086  -5.6091 -7 .063 

o.o I 
-O,2 

~ ~ -0.4 ~ f  

-1.0 0.0 ~.0 
4 6 0  aO tO0  

Position, r 

Fig. I. The solid curves (from bot tom to top)  are the 
temperature at times r = 1.25, 2.5, 3.75 . . . .  , 11.25, as a 
function of  the radial coordinate, computed from the phase 
field model for the case e = 0.01, A = 0.5 and ~ = 1.0. The 
dashed curve represents the locus of  the interface ~b = 0.5 
and the almost coincident solid circles are taken from the 
Greens function solution at the corresponding time levels. 

ature also. These observations broadly confirm 
the suggestion by Osher [27] and Caginalp and 
Socolovsky [10] that the numerical solution of 
the phase field equations by a finite difference 
method on a uniform mesh could be expected to 
breakdown for Ar > ~. 

We now discuss the solutions computed on 

sufficiently fine meshes for which the numerical 
oscillation was not present. We found the best 
agreement in the interface temperature between 
the two methods was obtained when it was ex- 
pressed as a function of the interface position, 
the disparity being insensitive to ~(/Ar (in the 
phase field formulation the interface position 
was defined to be given by ~b = ½ ). The interface 
temperature as a function of interface position 
is controlled largely by heat flow, and this ex- 
cellent agreement indicates that our scheme pro- 
vides a good solution of the heat equation. How- 
ever, the agreement between the two methods for 
the interface temperature ui (as well as its posi- 
tion p and velocity/~), expressed as a function of 
time depended much more strongly on the val- 
ues ~ and Ar. In particular, the disparity between 
the two numerical methods increased monoton- 
ically with time. This distinction between the er- 
rors in the interface temperature expressed as a 
function of time or position is illustrated in fig. 
2 for ~ = 0.1. The central dashed line indicates 
the interface temperature as a function of po- 
sition, as computed by the phase field method. 
This curve is almost coincident with the solid 
circles which represent the same quantity but ob- 
tained from the Greens function method. How- 
ever, each solid circle is not coincident with the 
interface temperature for the corresponding time 
level, thus indicating a considerable disparity in 
the two methods when the interfacial tempera- 
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Fig. 2. The  solid curves  ( f rom b o t t o m  to top)  are the 
t empera tu re  at t imes  r = 1.25, 2.5, 3.75 . . . . .  11.25, as 
a func t ion  o f  the  radial coordinate ,  compu t ed  f rom the 
phase  field model  for the case ~" = 0.1, zJ = 0.5 and  

= 1.0. The  dashed  curves  are the  locus o f  ( f rom left to 
right)  ~b = 0.1,~b = 0.5 and  Cb = 0.9. The  solid circles 
represent  the  locus o f  interface t empera tu res  c o m p u t e d  f rom 
the Greens  func t ion  solution; each solid circle cor responds  
to the  same  t ime  levels as the  solid curves,  and  the  t ime  
levels increase upwards .  

tures are compared as a function of time. 
A summary of the differences between the two 

methods is given table 1, where the difference 
between the two techniques in the interface tem- 
perature (averaged as a function of time over the 
computational time interval of 12 time units) is 
tabulated in terms of the mesh spacing and ~. 
The italicized entries indicate an unstable nu- 
merical solution, as discussed above. The varia- 
tion in the errors of p and/~ showed similar be- 
havior to the interface temperature. For a fixed 
value of the mesh spacing the error between the 
two techniques decreases as ~ decreases, except 
for the case of reduction of ~ from 2 × 10 -2 to 
the smallest value 10 -2. This we attribute to the 
error between the exact phase field solution and 
the classical solution being sufficiently small for 

= 0.01 that it is comparable to the numeri- 
cal errors in the Greens function solution of the 

classical problem, as well as the errors in the 
quadrature formula (with a time step of 0.05) 
used to compute the average surface temperature 
from the numerically computed phase field so- 
lution. Linear regression of the errors against 
for fixed values of Ar show the error between the 
numerical solution of two different formulations 
to be first order, i.e., cx 2~-, where the constant 
2 was found-to be 78.6,78.56,77.13,73.32 for 
Ar = 0.001,0.002, 0.01,0.02, respectively. The 
convergence with ~- is therefore insensitive to the 
mesh size (assuming that numerical instability 
is not present). It also confirms the asymptotic 
theory of the phase field equations in the limit 

~ 0 by Caginalp [ 8 ] which indicates that their 
solution approaches the sharp interface solution 
in this limit. This strong linear dependence of 
the error on ( for a fixed mesh allows the ap- 
plication of accelerated convergence techniques, 
such as Richardsons method, to the phase-field 
equations. 

With the value of ~ fixed the errors decreased 
as the mesh spacing was refined, albeit very 
slowly. There was one exception to this for 
~ = 0.01, where regression of the errors with 
respect to Ar indicates that this is not so. This 
we attribute, as discussed above, to comparable 
errors associated with the Greens function tech- 
nique and the quadrature formula used when ~ is 
sufficiently small. We fitted a quadratic polyno- 
mial to the errors as a function of s = Ar/~ for 

= 0.02, 0.05, 0.075 and 1.0. The values of the 
coefficients are given in table 1 and show that 
the convergence is predominantly quadratic; 
however, the coefficients do depend on ~. 

In summary, these calculations reveal that a 
numerical instability occurs when either the time 
step exceeds a critical value, which is indepen- 
dent of the mesh size, or the mesh spacing is ap- 
proximately greater than or equal to ~. The op- 
timum value of Ar is given by Ar ~ ~" because 
the error is not significantly reduced by using a 
finer mesh compared to the consequent increase 
in processor time. The errors themselves appear 
to be O(~') and dependent only weakly on the 
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mesh spacing provided At" _< g. _ Vep _ c o s O Y + s i n O f .  IW/,I 

4. Two-dimensional calculations 

In addition to the spherically symmetric cal- 
culations previously described, a series of two- 
dimensional numerical calculations are per- 
formed in order to further evaluate the present 
phase field model. The primary objective is to 
evaluate the behavior of the given phase field 
model for realistic physical parameter values, 
i.e., evaluate how well the diffuse interface 
model reproduces the essential physical mecha- 
nisms, and investigate the feasibility of accurate 
numerical simulations of unconstrained solid- 
ification of a pure material in an undercooled 
melt. 

For the two-dimensional calculations, the 
phase field equation given by eq. (6) is modified 
to include anisotropy in the parameter g, where 
the anisotropy is assumed to have the form 

~(0) = gq(O) = ~-(1 + 7coskO). 

The angle 0 is defined as the angle between the 
normal to the interface and the x-axis, and k 
specifies the mode number. Evaluating the vari- 
ational derivative of eq. ( 1 ) after including the 
variation of g with orientation yields a modified 
version of eq. (6): 

- - 9  
e-O~ 
m Or 

-4(1 --4)[~- ½ + 30~-~.auO(1 -~)] 
_ ~ 2 0 (  o~) 

° (,(0),'(0) .~v) -t- F2 ~--~y 

+g2~7. (r/2 (0)~7~>). (23) 

In the phase field model, the interface is repre- 
sented by level sets oft;. In order to compute the 
anisotropic behavior, the orientation angle is de- 
termined in terms of the phase field ¢~ using the 
following relation for the normal vector: 

From this expression we have the definition 

tan 0 - ~b~. 
- -  ( / ) X  ' 

and, in addition, we obtain 

]v~r2 ' 

iv+r 2 
These relations are used to compute the terms in 
eq. (23) which arise from expanding the deriva- 
tives of g(0). 

It is shown in [28] that the only modifica- 
tion to the free boundary problem eq. (14) to 
eq. (16), obtained in the limit g ~ 0, is to 
the modified Gibbs-Thomson equation which 
becomes 

m[q(0)]2  + [~1(0) + ~/"(0)]~ . 

(24) 

We note that allowing ~ to depend on 0 modifies 
both the interface kinetic and curvature terms. 
It is shown in [28] that the latter is the same as 
that obtained from sharp interface models where 
the surface energy depends on the interface ori- 
entation. 

For the two-dimensional simulations, symme- 
try conditions (vanishing Neumann conditions 
for both ~ and u) are applied at the boundaries 
of the rectangular domain, which has scaled di- 
mensions of XL and YL in the x and y coordi- 
nate directions, respectively. We note that the 
results presented here for the temperature and 
phase field are displayed after reflecting the com- 
putational domain about the line y = 0, which 
corresponds to the axis of the dendrite. From the 
chosen definition of the dimensionless variables, 
the value u = 0 corresponds to the melting tem- 
perature of the pure material, while u = -1 is 
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the undercooling temperature (the dimensional 
undercooling is AT). Initially for each calcula- 
tion, a small region of solid (u = 0) is located at 
the x = 0, y = 0 corner of the domain, and the 
remainder of the domain is undercooled liquid 
(u = -1 ). The shape of the initial solid region 
is either one-quarter of a circle with an initial ra- 
dius denoted by ro or one-quarter of an ellipse 
with semi-minor axis Yo and semi-major axis Xo. 
Either continuous initial conditions, for which 
the values of~ and u change smoothly over a thin 
region, or discontinuous conditions were used in 
the computations. For the results presented, the 
long-time behavior of the solutions is insensitive 
to the type of initial conditions assumed. 

The two-dimensional simulations were per- 
formed using property values for pure nickel. 
The values for the required material parame- 
ters are: cr = 3.7×10 -5 J / c m  2, Tm = 1728 K, 
L = 2350 J / c m  3, c = 5.42 J /  K cm 3, tc = 
0.155 cmZ/s, and ~t = 285 cm/K s. Except for 
the kinetic coefficient,/~, these property values 
for nickel are readily available (see [29]). The 
value for the kinetic coefficient lies in the range 
of estimated values and was chosen here partly 
from consideration of the numerical values of 
the dimensionless model parameters. 

In order to completely determine the dimen- 
sionless parameters given by eq. ( 11 ) - eq. (13), 
we must choose values for the reference length, 
w, and the interface thickness & The choice of 
these parameters is based on the physical struc- 
ture we wish to compute and the practical lim- 
itations of accurately resolving gradients within 
the interfacial region for a desired computational 
domain of size XL and YL. For the simulation of 
dendritic growth, we choose to relate ~ and w to 
an estimate of the dendrite tip radius. Clearly, we 
would expect that 6 must be much smaller than 
the tip radius of the dendrite and that the do- 
main must be many times larger than the tip ra- 
dius to simulate the growth and development of 
the dendrite. In order to begin the calculations, 
we estimated the dendrite tip radius based on 
marginal stability theory [14] for a given value 

of undercooling, represented nondimensionally 
here by A. The computations are facilitated by 
larger values of d (large values of undercool- 
ing, AT), because the dendrite grows faster and 
encompasses a larger portion of the computa- 
tional domain. Values of d in the range of 0.4- 
0.5 are used here. A dimensionless undercool- 
ing ofA = 0.5 corresponds to an actual under- 
cooling of 217 K for nickel, which is an attain- 
able level of undercooling [20]. For an under- 
cooling corresponding to A = 0.5, marginal sta- 
bility gives an estimated value for the tip ra- 
dius of 1.7 × 10 -5 cm. Based on some prelim- 
inary computational experiments to determine 
how the interface thickness and the size of the 
domain should be chosen in relation to the tip 
radius, we obtained the parameter value a = 
400 in the definition eq. (11 ). For the physical 
parameters of nickel given above, this yields a 
value for the length scale w = 2.1 × 10 -4 cm; the 
dimensionless parameter m has the value 0.05 
for nickel. 

With the parameters c~ and m specified, the pa- 
rameter ~ was used in the computations to vary 
the thickness of the interface. The computational 
resolution was determined by the extent of the 
domain chosen (XL and YL) and the number of 
grid points used in the discretization of the do- 
main. We performed computations with ~" equal 
to 0.005, 0.0033, and 0.0025, but for the major- 
ity of the simulations of dendritic growth into an 
undercooled liquid we used the value ~= 0.005. 

4. I. Numerical  method 

One of the clear advantages of the phase field 
model is that the location of the solid/liquid in- 
terface does not have to be determined explic- 
itly. However, accurate numerical solutions to 
the phase field equations require that gradients 
of the field variables be adequately resolved over 
the thin interfacial region. Our objective is to 
evaluate the behavior of the phase field model 
presented here by simulating the growth of a 
two-dimensional dendrite into an undercooled 
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liquid. In order to perform the simulation, the 
governing equations are solved numerically in 
a two-dimensional rectangular domain of suffi- 
cient size to allow for the development of char- 
acteristic dendritic structure (e.g., side arms). 
Even with the phase field approach, an optimum 
solution procedure should employ some type of 
adaptive technique, particularly for the phase 
variable, since the solution varies over such a 
small part of the domain. Since our interest is 
primarily to evaluate the model itself, we have 
chosen to use straightforward finite difference 
solution techniques applied on a uniform com- 
putational grid. An advantage of this approach is 
that the numerical implementation of such tech- 
niques is quite simple and it is easy to take full 
advantage of highly vectorized large-scale com- 
puters. 

The governing equations given by eq. (7) 
and eq. (23) are a pair of coupled, second- 
order, nonlinear parabolic equations. They are 
discretized spatially using second-order finite 
differences on a uniform grid characterized by 
mesh spacings AX and AY in the x and y coor- 
dinate directions, respectively; for the temporal 
discretization we introduce the time step At. In 
order to maximize the computational efficiency, 
we employ explicit time-differencing on the 4~ 
equation which is nonlinear in all terms except 
for the highest-order spatial derivatives. The 
heat eq. (7) is linear in the temperature u but 
contains the source term depending on qS. With 
explicit time-differencing eq. (7) would be sub- 
ject to a more restrictive time step requirement 
than eq. (23): thus, we employ the alternating- 
direction implicit method (ADI) on eq. (7) 
which for the simple linear heat equation is un- 
conditionally stable and second-order accurate 
in space and time. The methods employed here 
are described in many standard texts on finite 
difference techniques for partial differential 
equations (for example, Richtmyer and Morton 
[30]). 

For the nonlinear phase field equation with 
explicit time-differencing (e.g., simple guler, 

Adams-Bashforth)i the unsteady linear diffu- 
sion part of the equation is subject to the stabil- 
ity restriction: At < (AX)2/(4m); however, the 
additional nonlinear terms in the equation may 
impose a more restrictive condition on the size 
of the allowable time step. The actual size of 
the time step was determined by numerical ex- 
perimentation. Both first- and second-order ac- 
curate explicit time differencing were evaluated 
for solving eq, (23); however, the first-order 
method was used to obtain the results presented 
here, since the restriction on the size of the time 
step for the q5 equation was such that first-order 
accuracy in time proved to be adequate to ob- 
tain a good balance in the spatial and temporal 
t r u n c a t i o n  error.  

4.2. Computation of dendrites 

Using the numerical technique described 
above we have sought to compute the evolution 
of dendritic structures using the parameter val- 
ues m = 0.05 and ~ = 400 which were deter- 
mined from the physical properties for nickel as 
described previously. The dimensionless param- 
eters ~-, /_1, and }, are varied in the calculations 
as is the size of the computational domain. We 
assume 4-fold anisotropy for all the calculations 
presented here so the mode number k has the 
value 4. 

We found that in the absence of anisotropy 
(~, = 0) the solid developed as an amorphous 
structure in which the dendrite tips were sub- 
ject to repeated tip splitting. A typical example 
of this behavior is shown in fig. 3a. For nonzero 
values of the anisotropy parameter 7, a very dis- 
tinctive needle crystal formed along each coordi- 
nate direction as a result of the four-fold symme- 
try of the anisotropy as shown in fig. 3b. This is 
consistent with the recent microscopic solvabil- 
ity theory of dendrite growth, which indicates 
the importance of surface energy anisotropy, as 
well as calculations on local models of solidifi- 
cation [15]. 
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Fig. 3. The computed  phase field for parameters  corre- 
sponding to nickel with ~-= 0.005, d = 0.5, XL = 4.5 and 
YL = 2.25; note that  the computat ional  domain  has been 
reflected about  the horizontal  centerline. The results show 
the the effect o f  anisotropy level: 
(a) ? = 0 and (b) y = 0.01. The black area is solid 
0 < ~b < 0.1; the white area is the interracial region 
0.1 < q5 < 0.9; the gray area is l iquid 0.9 < ~b < 1. 

For smaller values of  the anisotropy (7 less 
than approximately 0.01), the tip did n o t  set- 
tle down to a steady state over the period of 
the computation; it is not clear from our calcu- 
lations whether a steady state would have oc- 
curred on a larger computational domain over 
a longer period of dimensionless time. However 

it is clear that anisotropy has a profound effect 
on the evolution of the crystal. For values of the 
anisotropy parameter 10 -2 < y _< 2 × 10 -2 the 
dendrite tip rapidly locked into a definite steady 
operating state for the computational domains 
we employed. Unless otherwise stated all com- 
putations presented below for quantitative com- 
parison with non-zero anisotropy yielded a nee- 
dle crystal. 

In order to quantitatively describe dendritic 
growth we compute the the tip temperature U, 
radius R, and velocity V ( overbars denote phase 
field results) for the dendrite aligned with the x- 
axis in the following manner: we define the in- 
terface by the locus ~b (x, y, t) = ½ and so esti- 
mate the the dendrite tip position on the x-axis, 
and the corresponding temperature and curva- 
ture, at each time level, by linear interpolation 
from the mesh. The radius of curvature of the 
tip was approximated at each mesh point on the 
x-axis by employing the identity 

1 ~)yy 
R ~x 

where second-order accurate finite differences 
were used to approximate the partial derivatives. 
The tip velocity was approximated at the mid- 
point  of each time interval by using central dif- 
ferences on the dendrite tip position. 

In fig. 4 we plot V, R and U as a function of 
time. There is clearly a very well-defined oper- 
ating state for the tip over the greater part of  the 
time interval, following an initial transient as the 
tip quickly attains its operating state. The final 
transient is due to the dendrite tip encountering 
the end of the box. 

In performing the numerical computations 
several issues had to be addressed in order to 
evaluate the behavior of the present phase field 
model. First, we consider the effect of spatial 
mesh size and time step for a fixed set of dimen- 
sionless parameters. In table 2, we list computed 
values of  the interface velocity and dendrite 
tip radius for different mesh spacings and time 
steps. We note here that the mesh spacings in 
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Table 2 
The calculated tip velocity -V and tip radius R for different mesh spacings and time steps. The results were computed for 
parameters ~-= 0.005, 7 = 0.01, A = 0.5, ~ = 400, and m = 0.05 on a domain with XL = 2.0 and YL = 1.0. 

At AX = 0.01 AX = 0.005 AX = 0.003 AX = 0.0025 
V ~(102) V ~(102) V ~(102) V ~(102) 

1.0 x 1 0  - 4  4.57 7.34 5.43 6 . 7 9  . . . .  

5.0 xl0 -5 4.70 7.14 5.62 6.76 5.85 6.65 - - 

2.5 ×10 -5 4.84 7.11 5.72 6.74 5.96 6.61 6.04 6.53 
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Fig. 4. The estimated values of the dimensionless dendrite 
tip velocity ~, temperature U-, and radius R, against time 
r for the case ~- = 0.005, 7 = 0.015, and A = 0.4, 

each direction, AX and AY, are always taken to 
be equal to one another  in all the calculations. 
For the finer spatial meshes, the t ime step re- 
striction o f  the explicit t reatment  of  the ~b equa- 
tion only permit ted stable numerical  solutions 
for the smaller t ime step values. It is apparent  

from the results that the tip velocity is more 

sensitive to the discretization error than the tip 

radius. We note that the computa t ion  time for 
AX = 0.0025 and At = 2.5 x 10 -5 is 16 times 

greater than for the case with AX = 0.005 and 
At = 1 x 10 -4, but with only a corresponding 

change of  about  10 % in the numerical  values. 

In light o f  this, for the calculation o f  dendrites 
presented below, we employ the coarser o f  these 

two meshes and the larger of  the t ime steps in 

order  to adequately investigate the parameter  

space. In the calculations presented here, we es- 

t imate that there are approximately nine spatial 
mesh points within the interfacial region when 

AX = ~-; this level o f  resolution was used un- 

less otherwise stated. We note that in a similar 

computa t ion,  Kobayashi  [2] employed a mesh 

approximately six times coarser. 
We now discuss the effect of  the interface 

thickness on the computed  results. For the pa- 

rameter  values corresponding to nickel (i.e., c~ = 
400 and m = 0.05), an interface thickness (de- 

fined to be represented by ~h values between 0. l 

and 0.9) corresponding to ~-= 0.005 was found 

to be the largest allowable; for ~- equal to 0.01, 

the interfacial region is spread apart  to such an 
extent that it no longer approximates  a thin in- 
terface, while for ~- equal to 0.005 or smaller the 
interfacial region remains thin. We conducted 
a series o f  calculations in which only the inter- 
face thickness was varied. In table 3, we show 
the dependence of  the dimensionless tip veloc- 
ity, radius, and temperature on the interfacial 
thickness. We also list the percentage difference 
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between the computed tip temperature and that 
predicted by the modified Gibbs-Thomson con- 
dition eq. (16) using the computed tip velocity 
and radius; this provides a quantitative measure 
of the accuracy of the phase field approximation 
to the sharp interface model eq. (14), eq. (15) 
and eq. (24). It is evident that the operating 
state of the dendrite is sensitive to the interface 
thickness. However, as the interface width is re- 
duced the error in the modified Gibbs-Thomson 
equation is diminished. The interface moves 
more slowly at thinner interface widths. Similar 
behavior was observed in the spherically sym- 
metric calculations discussed Section 3.3. It is 
clear that in order to employ the phase field 
method as an accurate computational approach 
for approximating the solution to the sharp in- 
terface model, sufficiently thin interfaces must 
be taken which must be adequately resolved by 
the computational mesh. This we believe is the 
major computational issue to be addressed in 
the subsequent development of the phase field 
method as an accurate computational technique. 

From the above discussion in order to ade- 
quately resolve the interfacial layers we require 
AX = V, which for a value of ~- of 2.5 x l 0  -3 
produces the smallest error obtained in the 
phase field approximation. However, for the fi- 
nite difference algorithm with a uniform spatial 
mesh this requires an impractical amount of 
computing resources for the simulation of den- 
drite growth. The differences given in table 3 
represent a worst case and we found that with ~- 
= 5.0 × 10 -3 the error in satisfying the modified 
Gibbs-Thomson equation was typically 25%. 
We go on to describe results of dendritic growth 
which must be regarded in this context. Our aim 
is to further investigate the phase field model, 
and, in particular, the relation of the computed 
dendritic solutions to existing theories of den- 
drites, with which we find surprisingly good 
agreement. 

The dimensions of the computational domain, 
XL and YL were 4.5 and 2.25, respectively. Ini- 
tially the solid ,region was an ellipse with semi- 

major axis Xo = 0.5 and semi-minor axis Yo = 
0.05; both the solid and liquid had a dimension- 
less temperature of - 1. We employed a mesh of 
900 and 450 uniform intervals in the x and y 
directions respectively, corresponding to equal 
mesh sizes AX = AY = 0.005, with a time step 
At = 10 -4. Simple Euler time stepping was used 
to advance the solution in time. This mesh was 
the fin~ ,t ,re could practically employ consistent 
with doing sufficient runs to adequately cover 
the (y, A ) parameter space. 

Our first comparison is against the Ivantsov 
similarity solution for a parabolic interface prop- 
agating with constant velocity in the direction 
of its axis of symmetry into an infinite under- 
cooled melt. This solution assumes that the in- 
terface temperature is constant and equal to the 
melting point, and so interface surface energy 
and interface kinetic effects are neglected. It pre- 
dicts in two-dimensions that the Peclet number 
is related to the dimensionless undercooling A as 

A = ~ exp(7 9) erfc(vF~), (25) 

where P = 2vr /x  and A = C(TM -- To~)/L. 
Here v and r are the dimensional tip velocity 
and radius, TM is the melting temperature which 
is equal to the isothermal interface temperature, 
and T~ is the far-field temperature. Our phase 
field model includes both surface energy and 
interface kinetic effects and so the interface is 
consequently not isothermal with a tempera- 
ture equal to the melting temperature. This is 
confirmed in fig. 4 which shows that the den- 
drite tip temperature U is depressed beneath 
the melting point (given as zero in our non- 
dimensionalization). For purposes of compari- 
son to the Ivantsov model, which only accounts 
for conservation of heat, we estimate the un- 
dercooling parameter by A = c(T.p - ~nit)/L, 
( = U + 1 ), where Tinit is the initial temperature 
of the liquid in the phase field calculations. The 
initial temperature 7]nit is a good approxima- 
tion to T~ in the Ivantsov model, because at the 
large undercoolings we employ the temperature 



258 A.A. Wheeler / Computation of  dendrites using a phase field model 

Table 3 
The calculated tip velocity -V, tip radius R, and interface temperature  ~ for three values of  the interface thickness. The last 
column is the percentage difference o f  the calculated tip temperature  to the temperature  UGT computed  from the modif ied 
Gibbs-Thomson Eq. (24) using the ~ and R values. The results were computed  for parameters  ~, = 0.01, 3 = 0.5, a --- 400, 
and m = 0.05 on a domain  with XL = 2.0 and YL = 1.0; in each case the mesh spacing was given by AX = g. 

~_ Tr ~ (102)  ~7(102 ) UGT--U × 100 

5.0 × 10 -3  5.43 6.79 - 3 . 8 6  82 % 

3.3 × 10 -3  3.89 7.94 - 4 . 3 2  19 % 

2.5 × 10 -3  3.32 10.23 - 3 . 9 0  1 1 %  

gradient is well-confined to the vicinity of the 
dendrite during the period of constant velocity 
tip growth. In fig. 5 we compare the Peclet num- 
bers estimated from our computations, 79 = 
2R V, for different values of the dimension- 
less undercooling, A, against those predicted by 
the Ivantsov formula, 79t (A), shown as a solid 
curve. Here, the function, 791 (A), is obtained by 
inverting the Ivantsov formula eq. (25). The 
value of the anisotropy parameter is y = 10 -2. 
The agreement between the two is fairly good, 
improving as the undercooling decreases. In 
fig. 6 we plot the ratio of the estimated Peclet 
number to that given by the Ivantsov formula 
against the anisotropy parameter for zl = 0.4. 
We chose to plot the ratio ~/79t (~), because the 
estimated undercooling parameter, and hence 
the Peclet number, predicted from the Ivantsov 
theory 79t(~) varies between the calculations 
for different anisotropy parameters. We see 
from fig. 6 that the agreement to the Ivantsov 
theory improves as the anisotropy diminishes. 
It would appear that extrapolation of the al- 
most linear dependence of 79/791(A) to ~ = 0 
would reveal that the Ivantsov solution would 
not be recovered for zero anisotropy. However, 
as noted above no steady solution was found for 
~, < 10 -2, and so it is not clear whether there 
is any justification for such an extrapolation. 
In fig. 7 we compare the results of our compu- 
tations to marginal stability theory. Marginal 
stability theory predicts that 
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U n d e r c o o l i n g  p a r a m e t e r ,  

Fig. 5. The Peclet number  from our calculations ~ against 
the est imated undercooling parameter  A for nickel. The 
solid circles represent  runs on the domain  XL = 4.5 and 
YL = 2.25 with mesh size 5 × 10-3; the open squares on the 
domain  XL = 2.0 and YL = 1.0 with mesh size 2.5× 10 -3 .  
The solid curve is the predict ion from the Ivantsov formula 
Eq. (25). 

2~ca 
a* - 0.0192. (26) 

Lvr 2 - 

In this figure we plot the values of ~* from our 
computations against the dimensionless under- 
cooling parameter A for the smallest value of 
the anisotropy parameter (y = 10 - 2 )  for which 
we obtained a well defined steady dendrite tip 
operating state. The solid horizontal line indi- 
cates the marginal stability result given above. 
The results show increasing agreement with the 
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Fig. 6. The ratio of the estimated Peclet number 79 to that 
predicted by the Ivantsov solution 79I (~) plotted against 
the anisotropy parameter y with undercooling parameter 
~ = 0 . 4  
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Fig. 7. The calculated value of ~'* plotted against the un- 
dercooling parameter ~. The solid circles represent calcula- 
tions on the domain XL = 4.5 and YL = 2.25 with mesh 
size 5 × 10-3; the open squares where computed on the do- 
main XL = 2.0 and YL = 1.0 with mesh size 2.5 × 10 -3. 
The horizontal line corresponds to the value tr* = 0.0192 
from marginal stability theory. 

marginal stability result with decreasing under- 
cooling. The dependence of ~* on zt is unex- 
pected, and may be due to the inclusion of inter- 
face kinetics in the phase-field model, which we 

re., 
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Fig. 8. The calculated value of ~'* plotted against the 
anisotropy parameter, y, with undercooling parameter 
A = 0.4. The results were computed on the domain XL 
= 4.5 and YL = 2.25 with mesh size 5 x 10-3; the open 
circles represent calculations for which a steady operating 
state was not obtained. The solid squares correspond to val- 
ues of tr* computed by Ben Amar [ 19 ] on the basis of mi- 
croscopic solvability theory. The dashed line is the power 
law fit to the solid circles. 

expect to be significant at the large values of  the 
dimensionless undercooling used in the calcula- 
tions, but which are absent in both marginal sta- 
bility and microscopic solvability theory. In fig. 
8 we display ~* against the anisotropy parame- 
ter 7 for a fixed value of A. The dashed line in- 
dicates the best power law fit through the data 
which corresponds to or* c~ y1896. Microscopic 
solvability theory predicts the exponent in the 
power law to be 1.75. The data points for val- 
ues of 7 in excess of 2 x l 0  - 2  consist of  den- 
drites whose tip radius (R < 0.02) is less than 
the interface thickness and therefore we may ex- 
pect these results to be less reliable. Also shown 
in fig. 8 as solid squares are the results of  mi- 
croscopic solvability theory given by Ben Amar 
[ 19 ] who numerically computed the value of or*. 
The level of  agreement is surprisingly good, par- 
ticularly in view of  the fact the we are conduct- 
ing computations on a finite domain using the 
phase field model with a relatively large value of 
the interface width which, as we have discussed 
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above, is not a particularly good approximation 
to the classical free boundary problem obtained 
as ~ -~ 0. Moreover, this free boundary prob- 
lem includes interface kinetics which is absent 
in the microscopic solvability theory. In view of 
these limitations, the estimated exponent pro- 
vides some evidence to suggest that microscopic 
solvability theory and the phase field model in 
two dimensions contain a measure of agreement. 
The experiments conducted by Willnecker et al. 
[20] on the solidification of nickel measured the 
dendrite tip velocity to be in the range 37 to 48 
ms -l , our calculations predict tip velocities in 
the range 26 to 50 ms-1 for the anisotropy pa- 
rameter in the range 0.011 to 0.04. The value of 
7 for most materials, including nickel, is difficult 
to measure and unknown. However, despite this 
uncertainty in the value of 7 our calculations re- 
veal growth rates in the correct range, although 
we note that the experiments measured three di- 
mensional dendrites compared to our two di- 
mensional calculations. 

Finally, we use the present phase field model 
to simulate the development of a side-branched 
dendritic structure. We found that the forma- 
tion of side-branches was dependent on the 
spatial resolution used. For spatially underre- 
solved calculations, with approximately 3-5 
mesh points within the interfacial layer, uni- 
formly spaced side-branches evolved. However, 
when the spatial resolution was increased the 
side-branching disappeared. We attribute the 
formation of side-branched structure on coarser 
meshes to the noise associated with the larger 
truncation error. To investigate this further, we 
introduced random noise into the phase field 
equation for computations on finer meshes. In 
particular, we added the term Anrn into the ex- 
pression in square brackets in the discretized 
form of eq. (23), where An is the amplitude 
of the noise and rn is a random number in the 
interval [-0.5, 0.5]. Physically, this represents 
thermal noise at the interface and was also used 
by Kobayashi [ 1 ]..The production of side arms 
was very sensitive to the noise; side arms were 

stimulated for values of ,4n  as low as 2.5 x 10 -3 .  

In contrast the operating slate of the tip was 
insensitive to noise, the time average of the tip 
velocity and radius being only very weakly af- 
fected. This provides some evidence to suggest 
that side arm formation is a process distinct 
from the dynamics of the dendrite tip. 

In fig. 9 we show a computation that dis- 
plays side-branch formation. The phase field 
and isotherms are shown at three different di- 
mensionless times. In the phase field plot, the 
width of the curve represents the interval 0.1 _< 
q5 < 0.9, and thus gives an indication of the 
thickness of the interface. For this computation, 
we again employed the parameter values corre- 
sponding to nickel used throughout this study. 
For the simulation the domain has dimensions 
XL = 6.75 and YL = 3.375. The mesh spacing 
was AX = AY = 0.0075, and the time step was 
At = 5.0 x 10 -5. The computation starts from 
an elliptical solid region with semi-major axis 
xo = 0.15 and semi-minor axis Yo = 0.075. The 
dimensionless parameters are ?-= 0.005, 7 = 
0.01, and A = 0.5. 

5. Conclusions 

We have conducted a detailed study of the 
phase field method as a computational proce- 
dure for the solution of free boundary problems 
associated with solidification, and in particular 
dendritic interfaces. On the basis of the simple 
finite difference methods employed here we find 
that in simple one dimensional geometries ac- 
curate solutions can be obtained. However, in 
more realistic two dimensional geometries ac- 
curate computations require interfaces so thin 
that the need to accurately resolve them requires 
computing resources at the limit of current com- 
puter technology. However, less accurate com- 
putations on thicker interfaces provide surpris- 
ingly good quantitative agreement with both the 
Ivantsov and microscopic solvability theories of 
dendrite tip growth. Side branch formation in 
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Fig. 9. A simulation of a nickel dendrite with the phase 
field (on the left) and the temperature field (on the right) 
shown at three different dimensionless times (z). The di- 
mensionless parameters are T= 0.005, y = 0.01, and A = 
0.5. Random noise with a one-percent amplitude was in- 
troduced into the calculation to stimulate the development 
of the side-branched structure. The computational domain 
was reflected about the horizontal centerline. 
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fected. 
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thicknesses we believe that further use of the 
phase field model as an accurate computational 
tool for the computation of two and three di- 
mensional solid shapes will require more sophis- 
ticated numerical algorithms, possibly employ- 
ing adaptive finite element techniques. 
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