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Abstract. This paper describes the application of a laser diffraction technique to the study of electrocon-
vection in nematic liquid crystal cells. It allows a real-time quantitative access to pattern wave lengths and
amplitudes. The diffraction profile of the spatial periodic pattern is calculated and compared quantita-
tively to experimental intensity profiles. For small director tilt amplitudes ¢, the phase grating generated
in normally incident undeflected light and the first order term correction from light deflection is derived
analytically. It yields an I « ¢ dependence of the diffracted intensity I on the amplitude of director de-
flections. For larger director tilt amplitudes, phase and amplitude modulations of deflection of light in the
inhomogeneous director field are calculated numerically. We apply the calculations to the determination
of the director deflection and measure growth and decay rates of the dissipative patterns under periodic
excitation. Real time analysis of pattern amplitudes under stochastic excitation is demonstrated.

PACS. 42.70.Df Liquid crystals — 47.20.-k Hydrodynamic stability — 78.20.-e Optical properties of bulk

materials and thin films

1 Introduction

Electrohydrodynamic convection (EHC) in nematic lig-
uid crystals is one of the standard systems of dissipative
pattern formation. It has been studied extensively during
past decades. As a consequence of anisotropic properties
of nematic phase, the system is particularly rich in mor-
phology. Among the advantages of this system for exper-
imental characterization are the easy control of electric
excitation fields, convenient time scales and the straight-
forward observation techniques.

The equations describing the fundamental mechanism
yield two dynamic regimes: conduction and dielectric
structures. In addition to the primary instability toward
simple roll patterns with wave vectors normal or inclined
to the preferential alignment of the director (optic axis)
of the system, a variety of secondary instabilities have
been described. Besides the investigation of arrays of par-
allel rolls, scientific interest recently focussed on defect
structures and localized convection states [1-5]. The most
successful and widely used method for the investigation
of the complex convection patterns is optical microscopy,
based on the shadowgraph method [6]. It utilizes the de-
flection of light rays in the spatially modulated director
field of the nematic. It has been applied to the determi-
nation of wave vectors, onset thresholds and subcritical
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fluctuations of convection. One of the problems encoun-
tered in this very efficient observation technique is the
complexity of the optics in the periodically deformed di-
rector field. Simulations of the optical profiles have been
presented by several authors [6-12], and the consequences
of in-plane director twist have been considered [13,14]. Al-
though light propagation in such a two-dimensionally in-
homogeneous medium has been treated theoretically with
different approximation methods, and the qualitative re-
lation between director structure and observed intensity
profile in the microscope is well established, the method
fails to provide quantitative access to deflection ampli-
tudes of the director field. With varying amplitudes of the
spatially periodic director modulations, both the positions
of focal planes of the patterns and the intensity profiles
at given focal planes of the microscope change in a com-
plex way. Thus, the power of the method lies primarily in
a quantitative determination of the pattern wavelengths
and the topology of defect structures. Moreover, a fast
(real-time) observation of the pattern amplitude dynam-
ics requires considerable bandwidth and signal processing
speed.

The wave vector spectrum can be determined qual-
itatively from a Fourier transform of digitized micro-
scopic transmission images [12,15,16]. A more efficient,
quantitative way is the quasi-optical Fourier transforma-
tion by means of laser diffraction. Laser diffraction has
been applied earlier to the study of Williams domains or
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comparable dissipative patterns of nematics by Akahoshi
et al. [17], Vistin and Yakovenko [18] and Miike et al. [19].
In these studies, the evaluation of the scattering profile
remained to a large extend qualitative. A first experimen-
tal and theoretical study of the laser diffraction efficiency
of EHC has been presented by Carroll [20], and Kash-
now [21]. Scattering spots designated to gratings in phase
and amplitude of transmitted light can be distinguished.
They are generated by spatially modulated optical path
and light deflections, respectively.

In a structurally similar system, Bouvier and Scharf
have employed the Jones matrix method to calculate
the diffraction efficiency of periodically deformed direc-
tor fields in cells with structured electrodes and compared
it to experimental data [22]. Their method depends upon
the assumption of normal undeflected light transmission
through the medium and describes only the phase grating.

Comprehensive analysis of diffraction gratings formed
by EHC has been presented by Zenginoglou, Kosmopoulos
and Papadopoulos [9,23-26]. Various aspects of laser
diffraction by EHC have been considered, like the test
of the validity of geometrical optics [25], diffraction un-
der oblique incidence [23], director oscillations and re-
laxation, and the dielectric regime [26,27]. In a study of
stochastically excited EHC [28-30], laser diffraction has
been successfully applied to characterize fundamental scal-
ing laws in the statistical description of pattern dynam-
ics. The advantage of the laser diffraction technique over
shadowgraph observations is particularly evident in such
an experiment where data reduction is necessary to pro-
cess pattern wavelengths and the trajectory of the pattern
amplitude in real time.

The previous study of fundamental scaling laws in
stochastically driven EHC was based on several proper-
ties of the diffraction profiles which have not been explic-
itly given there [28,30]. This manuscript deals with the
underlying optical principles, it provides a justification
of the quantitative relations between diffraction profiles
and director field deflection amplitudes, and moreover, de-
rives the absolute diffraction efficiencies which allow the
determination of not only growth rates and relative pat-
tern amplitudes but also the director tilt amplitudes in a
quantitative way. We demonstrate the application of the
laser diffraction technique to the study of amplitude dy-
namics of deterministically and stochastically excited pat-
terns. A rigorous treatment of light propagation in two-
dimensionally inhomogeneous director fields of EHC has
not been presented so far, therefore we will discuss the
validity of several approximations. We recollect the meth-
ods to calculate light propagation and the corresponding
phase and amplitude modulations in two-dimensionally in-
homogeneous director fields. A weakly nonlinear analyti-
cal calculation is compared with numerical simulations of
the full nonlinear equations and with quantitative exper-
imental data.

The paper is organized as follows: a short introduc-
tion into the basic principles of the Carr-Helfrich mecha-
nism and the involved dynamic equations is given in the
second section. We introduce the experimental setup and

The European Physical Journal B

the qualitative structure of the diffraction patterns in the
third section. In Section 4, we derive the analytical for-
mula for the phase and amplitude gratings generated by
a weakly distorted director field, which also accounts for
first order effects of light deflection. In the course of the
fourth section, the quantitative numerical calculation of
the diffraction profile is performed. Although a great part
of the equations derived in this section have been com-
municated in earlier work by other authors, we consider
it helpful to include a comprehensive treatment of the
optical background here, in particular because in litera-
ture sometimes there seem to be contradictory details of
the calculations (see below). One obtains numerically the
phase and amplitude gratings produced by the mesogen
layer for normal and oblique incidence of monochromatic
light. This allows quantitative predictions from the com-
bined effects of ray deflection and optical path length mod-
ulation. We describe the diffraction efficiency of periodic
nematic director structures and compare our calculations
with the approaches proposed in literature. The numeri-
cal and analytical results are tested by comparison with
the experiment. Finally, we apply the method to the de-
termination of growth rates and Lyapunov exponents of
pattern amplitudes in EHC and demonstrate the power of
the method to determine real-time amplitude fluctuations
of director field modes.

2 Electroconvection

Electrically driven convection in liquid crystals bases on
the interaction of free charges in the mesogen with exter-
nal electric fields, and the coupling of fluid flow to the
deflection of the nematic director. A comprehensive re-
view is given, e.g., in references [31-34]. The essential vari-
ables describing the structures are the spatially modulated
charge distribution §(z,y,z) and the director tilt angle
&(x,y, 2), both are coupled wvia the electrohydrodynamic
equations. In an oscillating excitation field, the two quan-
tities have qualitatively different dynamic behaviour. For
the diffraction experiment as well as for the conventional
shadowgraph images, only the director field modulation is
relevant and accessible.

A sketch of the experimental geometry is given in Fig-
ure 1. The nematic director alignment at the glass plates
is fixed along z by surface treatment. The ground state
is a uniform director field in the cell. When an electrical
field E = U/d is applied between the transparent ITO-
electrodes at the glass plates, free charge carriers (ionic
impurities or dopants) in the nematic fluid are acceler-
ated and initiate a macroscopic flow. The conductivity
anisotropy of the material in combination with small fluc-
tuation modes of the director tilt lead to lateral charge
separation in x direction and a periodically modulated
flow field, which in turn couples to the director field by
hydrodynamic equations. At the critical field E., stabi-
lizing elastic and dielectric torques on the director are
outmatched by destabilizing hydrodynamic torques. Un-
der standard conditions, the system exhibits a forward
bifurcation to normal rolls (wave vector along the easy
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Fig. 1. Schematic drawing of convection rolls and director field
in a nematic sandwich cell. A snapshot of the spatial modula-
tions of director and charge fields (¢, ) in the cell midplane is
sketched.
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Fig. 2. Stability diagram of the electroconvection patterns at
the first instability measured for cell 1 (25.8 pm thick, m) and
cell 2 (48.5 pm thick, o) under square wave excitation. The
thresholds under sine wave excitation are not much different
from the square wave case (at comparable effective voltages).
Lines are from the analytical calculation, where known mate-
rial parameter from independent experiments, have been used,
if available. The remaining unknown parameter have been ob-
tained from the fit to the experimental data. The cut off fre-
quency v, = 51 Hz for cell 1 separates conduction and dielectric
regimes. In case of cell 2 the much higher cut-off frequency is
outside of the presented range.

axis of the director) or to oblique rolls. Threshold volt-
age and critical wave number are frequency dependent.
The pattern stability diagram of the two sandwich cells
studied here is shown in Figure 2. The nematic material
is Mischung 5, a mixture of four disubstituted phenyl-
benzoates [28], material parameters in Table 1. The first
cell has been prepared with the pure, undoped material,
which has a low conductivity and correspondingly low cut-
off.

The nematic mixture in sample 2 has been doped with
0.5 mass %o tetrabutyl-ammonium bromide. Therefore its
conductivities are much higher and the increased amount
of charge carriers shifts the cut-off frequency out of the fre-
quency range of measurements. It leads to a much more
stable pattern amplitude characteristics near the thresh-
old. In the undoped material, the content of charge carriers
is comparably small (‘natural’ impurities after synthesis)
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Table 1. Material parameters in equation (3) used in the cal-
culations. Experimentally data for Mischung 5 (last column)
have been taken from [14,45], measured conductivities corre-
spond to the non-doped material. The unknown parameters
and conductivities of the individual cells are obtained by fit-
ting the corresponding threshold voltages and wave number
characteristics for periodic ac driving to experimental data,
see also Figure 2.

Parameter cell 1 (2) Exper. value
o 1.4935 1.4935
Ne 1.6315 1.6315
e 6.24 6.24
€L 6.67 6.67
oy [s71] 90.0 (1350)  117.0
o 571 60.0 (900) 90.0
o [gem™'s™Y 0.1
! [gem™ts™ 3.3 3.6
Y2 [gem™'s™Y 3.3
m [gem™ts™ 3.62
72 [gem™ts™Y 1.0
K11 [gems™? 14.9 x 1077 14.9 x 1077
Ki3  [gems™? 13.76 x 1077 13.76 x 1077

and in the experiment, the threshold voltage is subject to
certain small but measurable long-term fluctuations.

In Figure 2, one distinguishes the low frequency ‘con-
duction’ regime and the high frequency ‘dielectric’ regime
of cell 1, with a distinct jump in the wave number at the
cut off frequency. Only the low frequency regime is in the
accessible frequency range in cell 2. All measurements in
this study are performed in the conduction regime, where
the director field performs only moderate oscillations syn-
chronous with the excitation frequency, but keeps its sign
during the field cycles. However, there is no principal lim-
itation for an application of the presented setup to struc-
tures of the dielectric regime [26,27,35].

The mathematical description is based on the Maxwell
and Navier Stokes equations. The linear stability analysis
of the torque balance uses a test mode ansatz for director
deflections and charge density modulations

Pz, 2, t) = iy cos(kyw) cos(k-z), (1)
Gz, z,t) = qu sin(kyx) cos(k-z), (2)

where k, is the periodicity of the pattern. Because the
director is fixed parallel at the glass plates, the boundary
conditions ¢(£z = d/2) = 0 enforce k, = (2n + 1)7/d,
n integer. Near onset, we consider only the ground mode
k. = 7/d. In the parameter regions investigated here only
normal rolls appear, and no y dependence has to be con-
sidered. Linearization leads to a linear ordinary differen-
tial equation system in (g, ¢). The solution for a constant
electric field amplitude E involves a 2 X 2 non-symmetric
time evolution matrix T [36] which depends on the wave
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vector k; of the particular test mode

(Yo =@ k(") o )

At square wave excitation, where only the sign of E alter-
nates, the time evolution at points with alternating sign
of F is given by a product of matrices with constant co-
efficients

q f— :t PP - q
(@) () = T=(At,) - T <At1>T+<Ato>(¢) 0). ()
tn = Z;O At;, E(t) = +E, (5)

where At; are the time intervals between consecutive
jumps. The solution at intermediate times is calculated
with equation (3). The involved material parameters are
listed in Table 1, further details are given in [36].

The largest of the two real eigenvalues of the matrix
product in equation (4) is related to the Lyapunov ex-
ponent of the system [36] and describes the asymptotic
behaviour of a small initial perturbation in (g, ). In case
of a periodic excitation, all At; = At = 1/(2v) are equal
and after n full periods of the ac excitation, the prod-
uct in equation (4) can be split in repeated blocks of the
product T+T~

(7)) = @y (6)

For t, > At, the amplitudes of both variables grow or
decay exponentially, and the (dimensionless) largest real
eigenvalue A\ (E, k;,v) of TTT™ gives the growth or decay
rate vA\;. The maximum A\ (F, k,,v) of all k, selects the
critical wave number k.. The theoretical threshold field
E. at a given frequency v is determined by the first pos-
itive value of A1 (F, ke, v) with increasing E. This value
coincides with results from the Floquet theorem.

With any optical detection methods (shadow graph or
diffraction), only ¢ is observable and asymptotically for
t > At, (in the limit of small ;)

P = poe M, (7)

where, ¢ is the initial amplitude of the considered mode,
related to fluctuations of director and charge fields. For
large amplitudes, ¢, is limited by nonlinearities that will
not be considered in the linear treatment. For sample 1,
the theoretical threshold curves U.(v) = E.d and k.(v)
can be fitted to the experimental data over a wide fre-
quency range with most of the involved material param-
eters taken from independent experiments, see Table 1.
Some remaining unknown viscoelastic parameters are ob-
tained from the fit. With this completed set of parameters,
the theoretical A\ (E, k., v) dependence can be calculated
analytically as a function of the excitation frequency v.

3 Laser diffraction experiment

The diffraction of laser light by the director pattern pro-
vides the opportunity to analyse the spatial mode spec-
trum in real time. Figure 3 sketches the experimental
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Fig. 3. Sketch of the experimental setup. The driving voltages
are synthesized by a computer with digital analog (DA) con-
verter and analog amplifier. The photodiode signal is sampled
by the computer at a maximum rate of 7 kHz with an accuracy
of 12 bit, or alternatively sampled by a digital voltmeter at a
rate of 50 Hz with an accuracy of at least 6 digits.

setup consisting of a low power (=1 mW) He-Ne laser,
the liquid crystal (LC) cell mounted in a Linkam micro-
scope hot stage TMS 600, a photodiode or alternatively a
diffusely reflecting screen for 2D camera images.

The photodiode can be moved by a stepper motor
in horizontal = direction across the scattering image. Its
aperture is 3 mm x 3 mm. At a distance ¢ of approx.
800 mm from the LC cell, this corresponds to an angular
resolution of 5 mrad. The 2D images of the CCD camera
are used for the qualitative characterization of the diffrac-
tion patterns only (see Appendix), while all quantitative
intensity measurements are performed with the photodi-
ode.

The test modes of equations (1, 2) correspond to a one-
dimensional stripe pattern along x in the microscope im-
age. For the sample cell 1 studied here, it appears at inter-
mediate frequencies, from the Lifshiz-point (below 20 Hz)
to the cut-off frequency (~ 50 Hz), as the first instabil-
ity. At lower frequencies, the wave vector at onset has a
non-zero y component.

Figure 4 demonstrates the two cases of normal and
oblique rolls for square wave excitation at 30 Hz and 10 Hz,
resp., at voltages slightly above the convection threshold.
In such cases where one or two superimposed wave vec-
tors form the spatial structure, the diffraction experiment
provides the pattern wave lengths, orientations and am-
plitudes. Defects and domain sizes will primarily influence
width and fine structure of individual diffraction peaks but
are not directly accessible from the profiles.

4 Optics
4.1 Light propagation

The light intensity at the position of the diffraction re-
flexes is directly related to the amplitude of the spatial
director mode. The problem of light propagation in a peri-
odically modulated director field has been investigated by
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Fig. 4. Snapshots of diffraction images (a, b) and respective
microscope images (c, d) for normal rolls at 30 Hz (a, c) and
oblique rolls at 10 Hz (b, d), cell 1. Numbers in (a) mark the
diffraction order. In the lower left part in (c), a localized defect
of the roll pattern is visible. The cell thickness is 25.8 pm.

different groups before [8,9,20-22]. These previous works
can be grouped into two different approaches. One is based
on the solution of the Maxwell equations, the calculation
of the spatial distribution of E and D. Yet, a complete so-
lution of the Maxwell equation with boundary conditions
can only be obtained numerically for the present problem.
A linearized wave propagation approach can be found,
for example, in reference [25]. The alternative method is
based on the calculation of light ray’s using the eikonal
method [37] or crystal optical methods [9,24]. Here, we
give a short outline of the calculation of phase and ampli-
tude of the laser light passing the LC layer using crystal
optics.

The polarization vector E of the incident laser light is
adjusted along the director easy axis, since only the ex-
traordinary wave is relevant for the diffraction effect (see
Fig. 1). Ordinary rays pass the LC layer without deflec-
tions and phase modulation.

In the lowest order of approximation, we may assume
a straight propagation of the electromagnetic wave with-
out any deflection of the light beam, r(z;x¢) being the
x-coordinate of the ray

r'(z;20) = dr(z;20)/dz =0 (8)

r(z;20) = To. 9)
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Fig. 5. Definition of angles on the ray ellipsoid, ¢: director
deflection, 7/2 — 3 : angle between optic axis and Poynting-
vector S, /2 — (3 : angle between optic axis and normal of

plane wavefront k.

It yields no amplitude modulation but a first estimation of
the phase profile of the light that has penetrated the cell.
Under these assumption the phase ¥s(x) in dependence

on the amplitude of director deflections is given by (see
Fig. 5)

/2
Ps(z) = ky, /nsﬂ(r, ', 2)dz = kyned + Ag(x),  (10)
—d/2
~ NoMNe
neg(8) = = =, (11)
\/ng cos? 3+ n2sin’ 3
B(r.r', z) = @y cos(kyr) cos(k=2), (12)
n2 — n?
Apg(x0) = —kyned 88 p ©? cos(2k,x0), (13)

where ngﬁ is the effective refractive index and n,,ne are
the ordinary and the extraordinary refractive indices of
the nematic material (see Tab. 1). Only the first non con-
stant term in the series expansion of ngﬁ enters the re-
sult, the constant phase does not contribute to the diffrac-
tion profile. Although, as will turn out below, the result
in equation (13) is a linearly correct approximation, the
ansatz is only justified by the following exact treatment:
The calculation of light propagation basing on the cal-
culation of ray paths (r(z;xg),z) uses the FERMAT prin-
ciple. From the symmetry of the problem, no change of
polarization of the light can occur. If the wave number of
the laser light k; is much larger than the wave number of
the pattern, the FERMAT principle can be applied in the
birefringent material. The minimum condition is

d/2
/néﬂr(r, r’,z)ds = min, (14)

—d/2
neg(r,r',z) = \/ng cos? 3 +n2sin? 3, (15)
B(r,r’", z) = ¢y cos(kyr) cos(k,z) — arctanr”, (16)

=V1+r2dz,

(17)
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where ng is the effective ray index!. Applying the EULER-
LAGRANGE formalism leads to a ordinary differential
equation of second order in the displacement r(z;xzq) of
a ray

"= oIS (4 ) (b 4 ) (18)
= _— T
Pt n2nZ 1 2)
t1 = k. cos(k,r) sin(k.z) (n2 cos® 8 — n2r’ cos® Bsin 3

n2r cos Bsin® § —

n sin 6)
ty = ky sin(k,r) cos(k.2) (n2r’ cos* B+ nZ cos® Bsin B

+ng 2 cos Bsin® 3 — n2 nor "sin* ﬁ).

Equation (18) is an exact result which we use in a RUNGE-
KuTTA algorithm for a numerical computation of the ray
paths. Expansion of (14) to first order in the amplitude
¢ of the spatial mode of director deflection yields

2 _ 2
%gptkz cos(k,r) sin(k, 2).

o

7,//

Q

(19)

The integration of equation (19) with the initial values

Tlam—ajo = 0, 7']o=—aj2 = 0 (20)
and the approximation cos(k,r) = cos(kzxo) leads to a
path which enters at o and

1 2
k—ucpt(lJrsmk z) cos k.
. n2

o

r(z;@0) = xo — (21)
In order to describe the focussing effect in the shadow-
graph method, the second order term in (; must be con-
sidered, it can be found in reference [6]. For the diffrac-
tion pattern, mainly the phase is important (at least for
small director deflections) and therefore no consideration
of higher order terms are necessary. In order to calculate
the resulting phase beyond the cell, we have to distinguish
between the direction of propagation of energy flux S and
the normal of wavefronts k (Fig. 5). In uniaxial birefrin-
gent material the relation is [40]
2

tan<gf[§) :Z—gtan(gfﬂ).

The phase can be calculated using different indices

k%: /ngﬁds = /nsﬁd|k| = /nsﬁcos(ﬁ—ﬁ)ds. (23)

Finally, the calculated lateral phase difference along
curved paths at the exit position for small director de-
flections is basically the same as the result for straight
transmission (13)

Al/)(?”, Z)|z=d/2 = Al/)s(l‘o)

! In literature, e.g. [6,38,39], there has sometimes been a
confusion about the appropriate usage of the ray index or re-
fractive index in the computation of light propagation through
a birefringent nematic layer with periodically deformed direc-
tor field.

(22)

(24)
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This result is in agreement with the relation in [37] calcu-
lated from the eikonal equation. Also, the next order term
in 3 is stated in [37]. The consideration of the displace-
ment r(z;xg) — xo gives

Aw(iaz)|z=d/2z —kined 88;

z =r(d/2;x0),

cpt cos(2k;T), (25)

o

(26)

Z denotes the exit position r(d/2;zg) of a beam entering
at x¢p which may differ from zy due to the ray deflection.
Therefore, the first order bend of the light paths is an ef-
fect of the birefringence (the inclination of the optic axis
of the nematic material respective to the incident beam
direction) and is not the result of the periodic modula-
tion of the refraction (connected with the ray index) in
z-direction.

The displacement of the rays after propagating the cell
and the conservation of energy gives the intensity Z in
terms of the incident intensity Z,, and the amplitude of
the electric field £ (with £2 oc Z) in the exit plane

IO(SCUO = I&.f,

[r(z; 20 + dzo) — 7(2; $0)]|z:d/2 ’

k 2 _ 2 -1
= (1 + 2k_x %gpt sin kax) . (29)

(27)

Iodxo =7 (28)

I _ &)

7, &

o

The equation (19) is only correct in the limit of small ¢
when rays leaving the cell are nearly parallel in good ap-
proximation. A correction resulting from more exact treat-
ment based on V.S = 0 can be found in reference [9].

Figure 6a illustrates the light propagation from differ-
ent entry positions along the z-axis in the case of a strong
director tilt amplitude ¢ = 20°. It compares the numeri-
cally calculated paths with the analytical result from (21).
Also the intensity and the phase at exit position are de-
picted in Figure 6b and 6c. The analytical result for the
phase differs hardly from the exact numerically calculation
whereas the first order approximation in intensity differs
even qualitatively from the numerical values. Fortunately,
the diffraction efficiency is dominated by the phase pro-
file and therefore the conclusions drawn from diffraction
profiles about director deflections are correct up to large
deflections angles.

4.2 Diffraction profiles

The cell is illuminated with a normally incident planar
wave, polarized in x direction. The area contributing to
diffraction is a circular spot with radius s ~ 0.5 mm. In
general, the electric field at the rear of the cell can be
written as

g(x)emw(x)’

Elizar = (30)

with the amplitude £(x) and the lateral phase difference
Ay(z) of the wave at the position (x,z = d/2). For a
one-dimensional modulation (Egs. (1, 2)), each location x
can be considered as the origin of a spherical wave. The
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Fig. 6. Numerically (solid) and analytically (dotted) calcu-
lated ray propagation (a), intensity (b), and relative phase (c)
of light after penetrating the nematic layer at z = 25 pm.
The assumed director tilt (¢ = 20°) is schematically depicted
in (a), the grey scale visualizes the effective refraction index
for straight light propagation. The periodicity of the ampli-
tude grating is that of the director field. In contrast, the dom-
inating phase modulation has twice the wave number of the
director field. A cell thickness of 50 pm and optical parameters
of Table 1 have been assumed.

diffraction intensity at £ > s into the angle 6 in the (z, z)
plane is

(31)
(32)

dE(x, ky;l) = #eﬂ*kﬂ%w(mﬂdxdy,
k.l =kl — xk, sind,

where k; is the wave number of the incident light, the
vector I connects the cell with the detector position and ¢
the distance between cell and detector. Integration over a
circular area with radius s of the illumination spot gives
the amplitude of the complex wave with the corresponding
intensity

E(6) / / E(z)el [Phsin0+A0@]qpdy,  (33)
O
1(6) o |E(9)]2. (34)

To calculate the complete diffraction function numer-
ically, we consider both the spatial modulation of £(x)
(amplitude grating) as well as the phase modulation
A(z) (phase grating). Basically, the first one is effective
for shadow graph images. In contrast, when the director
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modulation is small, the latter plays the dominating role in
the diffraction characteristics. Therefore, we will consider
for analytical approximations the phase grating alone.

In case of small director deflections, the differences be-
tween exit position £ and entry point xy can be neglected
and the periodicity of the phase grating can be written as

AY(x) = Athmax cos(2k, ). (35)
It is twice that of the director field and therefor diffrac-
tion reflexes from the the phase grating appear only at
even order n. On the other hand the periodicity of the
amplitude grating (29) is the same of the director field
and it contributes also on odd order reflexes.

The integration of (33) gives the intensities I,, = 1(6,,)
of the nth order diffraction spots. With the assumptions
E(x) = const. and (35) the intensities at angles 6,, are
described by Bessel functions J,, , with the amplitude of
the laser light phase modulation in the argument

Lig)  BOE A,
o B e (Ame) X G

(36)

where I is the intensity of the mean beam at the ground
state. Using (13) and (24) gives the final quantitative rela-
tion between normalized diffraction intensity and director
tilt amplitude at the dominating second order reflex

Le) 1 d”g —ng
8n2

o

2
] o, where I, < Iy.  (37)

The numerically obtained diffraction efficiencies in the
limit of small ¢; confirm the relation (37) including the
prefactor. The analytical approximations are satisfactory
up to ¢ ~ 30° for thin cells.

The numerical calculation offers an easy way to con-
sider effects from oblique illuminations, an important
point to understand the sensitivity of the diffraction im-
ages to a non perfect sample orientation. A detailed dis-
cussion is found in the Appendix.

4.3 Experimental test

We tested the presented calculations with the setup
sketched in Figure 3 with sample 2. The temperature is
stabilized at 32 °C and the measurement is performed
at 500 Hz sine excitation. Due the high conductivity the
cut-off frequency is shifted above 600 Hz and the pattern
is more permanent at 500 Hz sinodial excitation than in
cell 1. A circular aperture with 0.5 mm in diameter de-
fines the illumination spot. A smaller movable photo diode
(0.3%x0.6 mm) is positioned in a distance of £ = 820 mm, to
obtain a high resolution in diffraction angle. The analog-
digital-converter is a programmable Keithley multimeter
with a resolution of 24 bit and a sampling rate of 50 s~ 1.

Figure 7 shows the baseline corrected intensity along
x direction in the a-z plane (y = 0 in Fig. 4) for two
applied voltages slightly above the instability threshold.
All profiles are normalized with the transmitted primary
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Fig. 7. Comparison of numerical calculated diffraction profiles
(solid line) and measured intensities (dots), normalized to the
primary beam intensity. The measured profile at U = 28.79 V
(a) and U = 28.90 V (b) corresponds to the calculation with
amplitudes ¢ = 7.4° (a) and ¢ = 12.6° (b). The corresponding
deflections from measured I5/Iy using (37) are 7.5° and 11.0°.
The pattern wave length Agiy = 48 pm, cell thickness 48.5 pm,
U. =28.73 V.

beam intensity at § = 0. Note the logarithmic intensity
scale. In order to discriminate the diffracted light from
a small constant background (scattered light from glass
plates and small amplifier offset), we subtract the con-
stant signal of the order of 10™%, detected at large de-
flection angles (6 > 0.5 rad), from all measurements.
In superposition with the constant offset, small fluctu-
ations in order of 10~7 are observed which drop below
the detection level when the sample temperature is in-
creased above 80 °C into the isotropic phase. The inten-
sity profiles are compared with numerical calculations for
different director amplitudes. The best fits lead to direc-
tor deflections ¢ = (7.4 £ 0.3)° and ¢ = (12.6 £ 0.3)°,
e=U/U;—1~2x10% and € ~ 5x 103, resp. (Fig. 7). The
normalized intensity at the second order reflex coincides
well with the value obtained from analytical treatment

(Eq. (37)).
5 Applications
5.1 Study of EHC near the threshold

The sensitivity in the detection of small pattern ampli-
tudes and the quantitative relation between diffraction in-
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Fig. 8. Intensity at the second order peak within a sequence of
increasing (o) and decreasing (A) driving voltage in cell 2. The
fit to a function I « (U — Ue.)? yields a critical voltage U, =
28.84 V at sine wave excitation with v = 500 Hz. Due to a slow
drift in conductivity the critical voltage is shifted to a higher
value as in Figure 7. In the insert, the same data are presented
on logarithmic scale, an increase of fluctuation amplitudes in
the subcritical voltage range is clearly observable.

tensity and director tilt provides the opportunity to study
electroconvection near the onset threshold experimentally.
Amplification of thermal fluctuations slightly below the
threshold has been studied previously with the shadow-
graph method [2,4,41-43].

For measurements near the instability threshold, we
use cell 2. We study the stationary director deflection am-
plitude as a function of the control parameter e = U/U.—1
by increasing the driving voltage gradually from a subcrit-
ical value to a voltage above the threshold. The voltage
is increased adiabatically slowly such that the director
deflection is always practically in equilibrium. Simulta-
neously, the diffraction intensity at the second order re-
flex is recorded as a quantitative measure of the director
field modulation. The constant scattering background is
eliminated as above. The experiment is repeated with the
opposite direction of the field sweep, the diffraction in-
tensity is recorded while the driving voltage is decreased
with the same rate. The expected characteristics for a per-
fect forward pitchfork bifurcation is ¢ o< 1/e. Considering
relation (37), this would correspond to a quadratic depen-
dence of the diffraction intensity at the second order reflex
from the control parameter

I o< ot o €2 (38)

Figure 8 shows the experimental results. For better visu-
alization, data are presented in linear scale and logarith-
mically in the insert. The systematic deviations of data
taken during up and down sweeps of the field, resp., are
negligibly small. No hysteresis is found. The parameter
U, is fitted such to obtain best agreement with equa-
tion (38). The measured intensities match the expected
quadratic behaviour, and therefore we associate the fitted
U, with the threshold voltage. Close to the threshold and
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Fig. 9. Time evolution of the diffraction intensity at the second
order reflex after changes of the field (20 Hz). The vertical
axis shows the amplified voltage at the photo diode, which is
proportional to the intensity /2. The threshold U. is 9 V in case
of cell 1. In (a), the applied square wave voltage is switched at
t = 0 from zero to supercritical voltages. In (b), the excitation
voltage is switched down to slightly subcritical values.

below U., the characteristics is covered by additional in-
fluences of noise. It clearly deviates from the prediction
of equation (38) indicated by the dashed curve. One of
the possible reasons is that subcritical fluctuations of the
modes close to the instability threshold [2,4,41] lead to
an increased diffraction signal at the corresponding posi-
tion. In addition, the equations used in the hydrodynamic
model use exact planar boundary conditions, while the
cell actually has a small pretilt, typical for glass plates of
sandwich cells with antiparallel rubbing.

5.2 Measurement of growth and decay rates
at periodic excitation

The solution of the linearized differential equation (4)
yield an exponential growth or decay of ¢; (7) in an elec-
tric field of constant amplitude. Equation (37) connects
this amplitude of the director deflection with the measur-
able diffraction intensity, e.g. at the second order reflex.
Both equations can be combined to

L(t) = L(0)e™ " = Ih(0)ere=r (39)
where A\ (E, v, k.) is the largest eigenvalue of the matrix
product TTT~ and Aexp the experimentally determined
growth rate from the intensity change at the second order
reflex. The factor 4 considers the fourth order dependence
of the scattering intensity from the director deflection am-
plitude. Positive growth rates for Aexp > 0 can be obtained
in the experiment by recording the intensity change at the
reflex after an electrical field £ > FE. is turned on. For the
measurement of Aexp < 0, the electric field is first switched
to a supercritical value E > E. where the convection pat-
tern develops. Then, the field is suddenly changed to a
value £ < E. and the intensity trace is recorded. Exam-
ples for these procedures in cell 1 are shown in Figure 9.
In order to detect the fast changes we use a analog-digital-
converter with a lower resolution (12 bit) but much higher
sampling frequency of 1 kHz. The constant background is
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Fig. 10. Growth and decay rates at different excitation ampli-
tudes (square wave). Growth rates (o) has been obtained from
traces similar to those in Figure 9a, and decay rates (A) from
traces like those in Figure 9b. The dashed line depicts the the-
oretical prediction 4vA;1(F) from a calculation of the largest
eigenvalue of TTT™ in equation (6). Material parameters are
given in Table 1.

eliminated and the data are fitted to exponential functions
in the middle of the detection range. Growth and decay
rates of 200 measurements are depicted in Figure 10 to-
gether with the eigenvalue A\;(FE) calculated analytically
from the material parameter in Table 1, and the factor 4
from equation (39), has been taken into account. There
is good quantitative agreement with the linearized the-
ory for electroconvection for driving voltages around the
threshold.

5.3 Trajectories under stochastic excitation

If the deterministic voltage is replaced by a stochastic ex-
citation sequence, the trajectory of the director deflection
exhibits irregular changes in time. A statistical analysis of
this phenomenon has been described in detail [28,29]. The
measurement of the time dependent diffraction intensity
provides a convenient tool to study the trajectories of pat-
tern amplitudes in real time. Figure 11 shows the example
of measured intensities at the second order reflex and the
corresponding numerical simulation of the trajectory by
solution of the differential equation (4).

The stochastic sequence in this experiment was a
dichotomous Markov process (DMP) with jump rate
160 s—'. Since the excitation sequence is synthesized with
a computer, it is possible to use identical noise sequences
in both experiment and simulation. In the bottom part of
Figure 11, the realization of the stochastic driving process
is shown. The numerical I(¢) have been obtained from the
©(t) trajectories by use of (37). Figure 11 demonstrates
that experiment and theory for stochastically excited EHC
do not only agree on the statistical level when fundamen-
tal scaling laws are compared, but even in details of the
trajectories to a satisfactory degree, when we take into ac-
count that the simulation cannot treat the involved addi-
tive noise exactly but substitutes it by some average [28].
Of course, even repeated measurements of experimental
trajectories are not exactly reproducible because of such
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Fig. 11. Real time detection of director amplitudes in stochas-
tically driven EHC, compared with a numerically simulated
trajectory with the same realization of the driving process. The
upper part (a) shows a measured intensity detected with the
photodiode at the second order diffraction reflex (solid line),
and a simulated curve (dotted line), both corresponding to the
driving sequence depicted in (b).

additive (thermal) noise. Trajectories taken with the same
noise sequence of the driving field differ in detail at small
intensities, but above the noise level they are very similar
and reproduce the simulated curve on average.

6 Summary

We have used laser diffraction as an detection method
for direct quantitative determination of the amplitudes
of the director field in nematic electroconvection. Instead
of the evaluation of the complete diffraction pattern, it
is sufficient to record the second order diffraction spot,
which is mainly influenced by the phase grating generated
by the director field. An analytic treatment of the ray
propagation in the LC layer by Fermat’s principle provides
the qualitative relation I/l = const x ¢} at the second
order diffraction reflex for small pattern amplitudes.

The proportionality constant can be derived from the
material parameters using an analytical approach that
considers at least the first non-linear term in light de-
flection in the calculation of the optical path of individual
light rays passing the cell. A numerical calculation of light
propagation, which does not use mathematical approxima-
tions, except for the concept of ray optics, confirms the an-
alytical result up to sufficiently large director deflections.
The complete diffraction intensity profile calculated nu-
merically is in good agreement with the profile measured
experimentally. It has been shown that it is sufficient to
use the simple relation equation (37) to determine the ab-
solute value of the director deflection amplitude from the
diffraction efficiency. We note, however, that a rigorous
treatment of the problem of light propagation (for exam-
ple by means of the FTDT method [44]) is the only exact
treatment of the optical problem. It has not been achieved
yet.
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The derived quantitative relations have been used in
three applications. In case of periodic sine wave excitation,
the reported technique permits us to confirm the square
root characteristics of the pattern amplitude in the pitch-
fork bifurcation of the stripe pattern. The non perfect
behaviour at subcritical values is attributed to thermal
fluctuations and a slight sample pretilt.

The agreement between analytically calculated growth
and decay rates of the amplitudes of the director field
and the measured light intensity at the second order re-
flex of diffracted light shows that one has to be very cau-
tious when growth/decay rates are determined from laser
diffraction intensities. The decay of the optical signal goes
with the 4th power of the director deflections, and conse-
quently, time constants differ by a factor of four.

The real-time quasi optical FOURIER transformation
of the pattern gives an easy access to fast changing mode
spectra or amplitudes, e.g. in case of stochastic driving.
We have demonstrated the direct correlation between the
driving electric field and the response of the director. Ob-
servation of the whole diffraction image instead of the tra-
jectory of one representative diffraction peak may provide
access to the development of the mode spectrum and ac-
cess to dynamic mode selection in the stochastic driven
system.

An important aspect in the experiment is the strong
dependence of the diffraction image on small devia-
tions from normal incidence. The problem of oblique
incidence has been addressed first by Zenginoglou and
Kosmopoulos [23]. In the Appendix, we consider in de-
tailed the dependence of the diffraction pattern from the
angle of incidence of the laser beam. It is demonstrated
that oblique incidence in general favors the reflexes of odd
numbered order, which in first line reflect the amplitude
grating produced by the director field.

The authors are particularly indebted to H. Schmiedel for
helpful comments, discussions and critical reading of the
manuscript. We acknowledge financial support from the
Deutsche Forschungsgemeinschaft (Grant Be 1417/4 and
SFB 294).

Appendix: Diffraction at oblique incidence

The experiments show that the diffraction profile has a
strong dependence on a the tilt of the cell respective to
the incident laser beam. A theoretical treatment with lin-
earization has been published in [23]. In case of oblique
incidence, where the cell is tilted in the (x, z) plane, the
symmetry 6 < —60 is broken. The initial condition for
equation (18) is now 7/(z) = tand, where ¢ is the en-
try angle of the laser beam into the LC-layer. We con-
sider this in the numerical calculation of the beam prop-
agation. In addition to this symmetry breaking, an extra
phase Ay(6) appears. Figure 12 illustrates the origin of
the additional phase difference. For the primary beam at
0 =0, qu)(@) vanishes. The symmetry breaking leads to
a slight shift of the diffraction spots, and more obviously,
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0<0

Fig. 12. A sketch of two light rays under oblique incidence sep-
arated by the wave length of the phase grating wave length Apn.
The additional phase Ay’ has to be considered in the calcula-
tion of the FRAUENHOFER diffraction for the positive (a) and
negative (b) wings of the diffraction image.

to a change of the relative intensities of even and odd or-
der spots. The condition allowing for the additional phase
for constructive interference on the 2nth even order spot
(n > 0,6, > 0) is (see Fig. 12a)

2
A¢O + n_ﬂ-,

Aph sin(f, + 9) = -

(40)

. 2mn
0,, = arcsin

+sin5>5;n>0 (41)
phhL

and for 6,, <0

2
0,, = arcsin ( ||

onke sin5> +40;n<0, (42)

where App is the wave length of the phase modulation of
exiting light and k; the wave number of the laser light.
The diffraction intensity calculated numerically for a di-
rector modulation of ¢ = 0.4 rad as a function of # and
0 is depicted in the density plot of Figure 13, Figure 14
shows the corresponding experimental data. The most ob-
vious result of the numerical calculation are the quanti-
tative changes of the diffraction intensities with the cell
rotation angle. Whereas the odd order maxima, which are
mainly generated by the amplitude modulation, exhibit a
minimum in the non-tilted cell and increased with a slight
tilt of the cell, even order spots show qualitatively oppo-
site behaviour. In the experiment we record the complete
diffraction image on a diffusely scattering screen with a
CCD camera (see Fig. 3) and scan the line y = 0 (see
Fig. 4a) from the digital image sequence. The camera gives
only a qualitative picture of the intensities, not an exactly
linear representation, but qualitative agreement with Fig-
ure 13 is clearly acknowledged. We remark that the small-
est diffraction angle 6,,(9) for a given order n is not reached
at 6 =0, but
d 1 27n 1

0, =0 = sind = = ~ —sinf.

a4 Il 43
s 2 Ak 2 (43)

Its position is depicted as dashed line in Figure 13 and co-
incides with the largest amplification/attenuation, resp.,
of the diffraction peak intensities.
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Fig. 13. Density plot from simulated diffraction profiles for
oblique incidence and a ¢ = 0.4 rad. The gray scale is log-
arithmic in the intensities. A cell thickness of 25 ym and a
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Fig. 14. Density plot of the measured diffraction profiles in
inverse gray scale for a tilted cell. The profiles are taken in the
midplane y = 0 of the diffraction images of a stable convec-
tion pattern. The tilt of the cell to the incident beam leads
to modulations of relative intensities and positions for all re-
flexes. One acknowledges the symmetry (—d, —6) < (9, 6). The
dashed line marks 6 = %9 as in Figure 13.
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