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Dense granular flows are often unstable and form inhomogeneous structures. Although significant

advances have been recently made in understanding simple flows, instabilities of such flows are often not

understood. We present experimental and numerical results that show the formation of longitudinal stripes

that arise from instability of the uniform flowing state of granular media on a rough inclined plane. The

form of the stripes depends critically on the mean density of the flow with a robust form of stripes at high

density that consists of fast sliding pluglike regions (stripes) on top of highly agitated boiling material—a

configuration reminiscent of the Leidenfrost effect when a droplet of liquid lifted by its vapor is hovering

above a hot surface.
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Granular flows are ubiquitous in the environment and in
industry, but there are still no known equations for general
granular systems. For flow on an inclined plane, however,
progress has been made [1–3], and current theories give a
reasonable explanation of uniform flowing states. The
simplicity of the inclined-plane geometry plays a crucial
role in such descriptions because boundary effects, which
can be exceedingly complicated in granular flows, are well
defined. This system is also well suited to discrete element
method (DEM) simulations [4–6] because it can be treated
periodically, and steady flows often result, so good statis-
tics can be obtained. The combination of detailed simula-
tions and experiments has led to a solid understanding of
steady flow states in this system where experiments and
simulations can be well summarized [2,5,7,8] by a recently
proposed model [7]. Little is known, however, about the
instabilities of this model or indeed of most granular flows,
and the model has only been well tested in simple shear
states. In contrast, the Navier-Stokes equation of fluid flow
has been known for over a century, and its accuracy has
been repeatedly tested by comparing the results of linear
and weakly nonlinear stability analysis to experimental
systems displaying an instability from a simple state to
one with a distinct pattern [9]. Such an approach, that is,
investigating the growth of instabilities from their respec-
tive steady states [10,11], will certainly be very useful in
testing granular constitutive models and will provide criti-
cal tests for emerging theories of granular flow.

The steady and fully developed state of a rapid, dilute
granular flow on a rough inclined plane was shown experi-
mentally to be unstable to the formation of longitudinal
vortices observed as lateral stripes [10]. In this pattern, the
downstream velocity and the layer height vary periodically
across the flow consisting of higher-slower and lower-
faster regions. The development is attributed to a mecha-
nism analogous to the Rayleigh-Bénard instability in
heated liquid layers [12]. The average packing fraction

�av of this flow was below 0.3 corresponding to a relative
density �r ¼ �av=�s � 0:5, where �s is the static packing
fraction (�s is in between the random-closed-packed and
random-loose-packed packing fractions [13]). This low
density state, however, is hard to find either numerically
or for some materials experimentally. Instead, we show
that when increasing the plane inclination angle, the stripe
state that emerges naturally is an instability of a dense
uniform flow state, that this stripe state is robust and easy
to find, and that the maxima of the downstream surface
velocity correspond to the highest regions of the modulated
height profile in qualitative agreement with the flow rule
for the uniform state [14].
The flow was analyzed for a wide range of granular

materials including different sized sand and glass beads
and various copper samples with different particle shape.
We demonstrate, using the apparatus illustrated in Fig. 1,
that longitudinal stripes are robustly observed over a broad
range of flow conditions with relative densities in the range
0:2< �r < 0:95 (corresponding to about 0:12<�av <
0:57), separated into the dense flow state for �r * 0:6
(i.e., �av * 0:36) and the dilute stripes for lower �r as
described below.
In the present study, two experimental setups were used.

The first apparatus, described in detail elsewhere [15], was
used to characterize flow regimes over a wide range of �.
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FIG. 1 (color online). Illustration of the experimental setup.
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Because the system was enclosed in a cylindrical tube,
precise measurements of the height profile hðyÞ and deter-
mination of the flow structure were performed in a second
setup. It consisted of a glass plate with dimensions
2:27 m� 0:4 m inclined at an angle � ¼ 41:3�, see
Fig. 1. In order to provide a random surface roughness,
one layer of the d ¼ 0:4mm sand grains was glued onto
the glass plate or it was covered by sandpaper with similar
roughness. The surface velocity of the flow, with down-
stream and transverse components us and vs, and the
height profile hðyÞ, determined by a laser sheet, were
obtained simultaneously using two cameras (Fig. 1).
Using camera 3, the velocity at the bottom of the layer
(ub and vb) was taken at a location where the glass plate
was clean. The flow velocities were determined using
particle image velocimetry on image sequences taken at
2000 frames=s. The relative density �r was measured us-
ing a method described in detail elsewhere [15]. The
majority of the data presented in this Letter were obtained
with sorted sand with d ¼ 0:4� 0:05 mm and d ¼ 0:2�
0:05 mm. The stripe state was also detected for glass beads
with d ¼ 0:18� 0:05 mm, d ¼ 0:36� 0:05 mm, and for
four sets of copper particles with similar size (d ¼ 0:16�
0:03 mm) but various shapes. The angle of repose �r varied
between 20:9� � �r � 33:8� for the materials tested.

DEM simulations were also performed to investigate the
instability. A soft particle model was used with a damped
linear spring for the normal force (coefficient of restitution
0.8) and Coulomb friction for the tangential force (coeffi-
cient of friction 0.5). Particle stiffness was chosen so that
the maximum overlap was less than 1%. Contact stresses
were calculated according to the method of [16] using a
Dirac delta function as the weight function. The time step
was 1=10 of the binary collision time. The base was made
of identical particles held at fixed positions taken from
another simulation where a thick layer was allowed to
form randomly. All quantities were nondimensionalized
using the particle diameters and gravity. The instability
was found over a range of parameter values: slope angle
34–39�, restitution 0.80–0.95 and width greater than 50.
Below, we present results from one typical simulation with
a slope angle 37�. If the slope angle in the simulations is
reduced below �r, then the flows come to rest with a
packing fraction of 0.6. We use this packing fraction to
normalize the results. The system was periodic in the x
direction (downslope length 24.3) and the y direction
(cross-slope width 120.15). The number of particles simu-
lated was 55 761, so the volume of the particles over the xy
area corresponded to a height of 10 (height at 100% pack-
ing fraction). The system was run for several months until
steady state was achieved.

In the experiments, the stripe state for all the materials
tested has qualitatively similar characteristics, and there is
no sharp transition between the states observed in the dense
and dilute flow regimes. Nevertheless, the flow structure of
the dense flow state is quite different from the dilute flow
case reported earlier [10]. The structure of the dense stripe

state consists of relatively narrow, dense, fast-moving re-
gions that are also the highest. In the dilute regime, the fast-
moving region corresponds to a height minimum, as sche-
matically illustrated in Figs. 2(b) and 2(c). The continuous
transition between the two regimes is characterized by
increasing height of the slow-moving region as the plane
inclination is increased as illustrated in Figs. 3(a)–3(c) or
in movies taken for various materials at [17]. The density
decreases with increasing � in a similar way for all mate-
rials as shown in Fig. 2(a), where �r is plotted as a function
of the normalized hopper opening ~H ¼ H=d and normal-
ized plane inclination tan�= tan�r. Generally, stripes are
only observed for tan�= tan�r>1:25. Stripes with the
structure typical for the dense regime are observed for
0:6< �r < 0:95 (corresponding to 0:36<�av < 0:57),
whereas the dilute regime, when it is observed, exists in
the range for 0:2<�r < 0:7 (i.e., 0:12<�av < 0:42). In
the following, we characterize the stripe structure in the
dense regime using experimental data shown in Fig. 3
obtained for sand with d ¼ 0:4 mm and d ¼ 0:2 mm and
numerical results shown in Fig. 4 obtained from DEM
simulations.
The flow pattern [17] has a downstream surface velocity

usðyÞ and a lateral surface velocity vsðyÞ. The downstream
velocity has a relatively large modulation of ðusmax �
usavÞ=usav � 0:2, whereas the lateral velocity is very slow
with maximal value vs

max � 0:04usav where u
s
av denotes the

average downstream surface velocity. Cross sections of the
velocity of the fully developed state in simulations are
shown in Figs. 4(a) and 4(b) showing very similar down-
stream velocity modulation, but somewhat smaller lateral
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FIG. 2 (color online). (a) The phase diagram of the system
presenting the mean flow density �r as a function of tan�= tan�r
and ~H ¼ H=d based on data taken for sand, glass beads, and
various copper samples. Various flow regimes are indicated; the
bullet in the dense stripe domain corresponds to the simulation
data presented. Illustration of the flow structure in (b) dense and
(c) dilute regimes, gray levels indicate local density.
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velocities. In the experiments, the lateral velocity mea-
sured at the surface vsðyÞ and at the bottom of the layer
vbðyÞ is of opposite direction in accord with the flow
structure obtained from the simulations [see Fig. 4(b)].

The experimentally observed height variation in
Fig. 3(d) agrees nicely with the simulation results
[Figs. 4(a)–4(d)]. The fast stripes correspond to a higher
narrow maximum of the hðyÞ curve, but another set of less
pronounced maxima is present between them. Thus, in-
stead of a sinusoidal hðyÞ profile observed for the dilute
regime, a more complex hðyÞ is seen where a higher, global
maximum corresponds to the fast flowing region and a
lower, local maximum corresponds to the slower region.
The double peak is also seen in the transmitted light
intensity in Fig. 3(f), but the wavelength of other important
measures of the pattern, e.g., the downstream velocity or
velocity in the yz plane [see Figs. 3(a)–3(c), 4(a), and 4(b)],
do not change during the dilute-dense transition so the
emergence of a nonsinusoidal height profile does not cor-
respond to a full frequency doubling. The pattern is ob-
served only in a finite range of the flow thickness with the

strongest amplitude at 10< ~h < 18. The wavelength of the
pattern � is related to the mean flow thickness hav as 2:8<
�=hav < 4:5 as shown in Fig. 3(g), so the cross section of a
roll is elongated as compared to the traditional Rayleigh-
Bénard rolls with nearly circular cross section [9].

Numerical simulations enable us to visualize spatial
variations of the relative density, Fig. 4(c), and of the

inertial number I in Fig. 4(d). The inertial number, usually
defined for incompressible flows [7], can be extended for
the compressible case. We define I ¼ d

ffiffiffiffi

�
p jD0j= ffiffiffiffi

p
p

, where

D0 is the deviatoric strain tensor [D0 ¼ D� TrðDÞ=3], �
the density, p the pressure, and we use the norm jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TrðAATÞ=2p

. We do not consider normal pressure differ-
ences and define p ¼ �Trð�Þ=3, where � is the stress
tensor and �0 ¼ �þ p. This is equivalent to the
Pouliquen definition when the flow is incompressible
[TrðDÞ ¼ 0]. The inertial number is proportional to the
shear rate and to the ratio of the collisional stress to the
total stress. The flow has the highest density in the fast-
moving region where I (and shear rate) is lowest. We
identify this region as a ‘‘plug’’ sliding fast on top of a
‘‘boiling’’ region with very low relative density and high
inertial number and shear rate, a configuration reminiscent
of the Leidenfrost effect [18] when a droplet of liquid lifted
by its vapor is hovering above a hot surface. Experimental
data visualizing the level of fluidization at the surface
[Fig. 3(e)] and the profile of the transmitted light intensity
[Fig. 3(f)] fully agree with this picture.
The relative density determined from the simulation data

decreases monotonically with increasing shear rate, see
Fig. 4(e), and shows an amazing collapse over a wide range
of densities and values of the inertial number I. This
suggests that, at least for fast chute flows, a simple equation

FIG. 4 (color online). Results of the DEM simulations:
(a) cross section of the downstream velocity ~u, (b) speed in

the yz plane (~s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~v2 þ ~w2
p

) with streamlines, (c) relative den-
sity �r ¼ �=0:6 or packing fraction �, (d) the inertial number I,
(e) dependence of relative density on I and best quadratic fit, and
(f) dependence of effective friction � on the inertial number I.
Solid line is best cubic fit. Dashed line is best fit to Pouliquen
model (Eq. 2 in [7]).
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FIG. 3 (color online). Images of the flow taken in reflected
light (illumination from the right) and normalized downstream
surface velocity ~us ¼ us=

ffiffiffiffiffiffi

gd
p

as a function of the normalized
transverse coordinate ~y ¼ y=d for sand with d ¼ 0:2 mm and
downstream distance from the outlet x ¼ 1:55 m at plane incli-
nations (a) � ¼ 42:6�; (b) 48.5� and (c) 52.2�, corresponding to
tan�= tan�r ¼ 1:56, 1.92, and 2.19, respectively. Data obtained
at x ¼ 2:13 m for sand with d ¼ 0:4 mm at � ¼ 41:3�:
(d) height profiles hðyÞ taken at various hopper openings H,
(e) laserline intensity (exposure time 4 ms), (f) transmitted light
intensity, and (g) dimensionless wavelength �=hav of the pattern
as a function of the normalized mean flow thickness ~hav ¼
hav=d. To adjust hav, the hopper opening H was varied.

PRL 103, 178302 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

23 OCTOBER 2009

178302-3



of state giving the pressure as a function of shear rate and
density is possible. To test the rheology, we calculate the
effective friction coefficient � by � ¼ �Trð�0D0Þ=pjD0j.
This is the � that minimizes the residual error j�0 þ
� D0

jD0j j. Simpler calculations of �, e.g., � ¼ ��xz=�zz

or � ¼ ��xz=p, produce poor results [no collapse would
be seen in Fig. 4(f)], due to the complicated strain field.
This definition is an extension of the Pouliquen model [7]
to include compressible flows. Figure 4(f) shows � as a
function of I and demonstrates a reasonably good collapse.
The data do not fit well with Pouliquen rheology and is
much more strongly curved and appears to even decrease
for large I [Fig. 4(f)]. At low shear rates, � increases with
increasing I, but at I ¼ 0:7, there appears to be a turnover
above which � decreases with increasing I. We believe
that this behavior of the system is a key feature leading to
the instability. Namely, by increasing the flow thickness
above a certain value, the inertial number near the plane
reaches a threshold above which the effective friction starts
decreasing. As a consequence, the local inertial number
(shear rate) grows even more, leading to stronger fluid-
ization near the plane. At the same time, the fluidization
drops in the upper layer (a plug develops), and this plug
slides even faster on top of the expanded fluidized region.
This mechanism agrees with other results for chute flows
[5], but in that case the simulations were too narrow for the
lateral instability to develop. On the surface, the plug
absorbs material from the two sides as the surface fluid-
ization is larger in that region, so the plug grows. In the
simulations, as the instability develops, the mean flow
speed decreases until a new lower velocity is reached at
which point the instability has saturated. Thus, the insta-
bility may play an important role on steeper slopes, where
no simple, steady state is expected, by increasing the
effective viscosity. Though we have framed our discussion
in terms of �, it is difficult to draw too many conclusions
from these results for a Pouliquen rheology. Our simulation
data shows density differences, normal stress difference,
and that the deviatoric stress tensor is not aligned with the
strain tensor. These all disagree with the assumptions of the
Pouliquen rheology indicating that a considerably more
complicated rheology is necessary along with an equation
of state to describe these flows.

This system provides a very interesting case for studying
granular rheologies because there is a complicated strain
and stress field but very simple boundary conditions. Since
the flow is steady, accurate measurements of all the flow
variables in a simulation are possible, the only constraint
being computer time. This system is therefore ideal for
developing and validating granular theories in new ways.
An intriguing possibility is that the lateral ridges and
furrows observed in large rock avalanches [19] may be
the result of the same instability.
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