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Abstract. - Couette-Taylor flow between cylinders with a superimposed axial flow is studied 
experimentally. The axial flow suppresses the basic stationary instability and leads to 
propagating Taylor vortices through a forward oscillatory bifurcation. While the throughflow 
velocity increases the propagating vortices are pushed downstream to the outlet so that at the 
velocity which corresponds to the absolute instability limit, the pattern is <<blown>> out of the 
system. The surprising coexistence of steady Ekman and propagating Taylor vortices close to 
the inlet and outlet boundaries was discovered. The wave number selection mechanism, similar 
to that existing in the front-propagating case, is also identified. 

The relation between convective and absolute stability conditions and the pattern 
selection problem was the subject of an interesting and intensive research on open and 
closed flow systems in recent years [l]. The distinction between convective and absolute 
instability conditions is well known in hydrodynamics[2], and in the framework of a 
Ginzburg-Landau (GL) equation for infinite and semi-infinite systems was discussed on 
several occasions [l ,  31. In the context of the GL equation it was shown [ l ,  31 that the 
transition between the two regimes occurs at  some critical value of the group velocity S* 
which is equal to the front propagation velocity in an infinite system[3]. 

However, in a finite geometry the sidewall reflection stabilizes the convective nature of 
propagating flows, as the theory [4] and the experiments [5] convincingly show that in a 
finite container absolute and convective instabilities lead to very different patterns. In the 
convective instability regime, travelling waves (TW) are localized. In the absolute 
instability regime one finds a saturated TW extending the entire cell besides the vicinity of 
the sidewall where TW are initiated. A somewhat different case was recently considered 
theoretically [6]. The authors of ref. [6] studied numerically with both 1D GL equation and 
basic hydrodynamic equations Rayleigh-Benard (RB) convection subjected to a lateral 
throughflow. First, when a lateral flow is imposed in a long narrow channel heated from 
below, a stationary convection becomes an oscillatory one in a form of TW which propagates 
downstream. Its velocity grows with the throughflow velocity and thus can be varied 
externally. Secondly, due to zero value of the velocity imposed by the inlet boundary the TW 
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state is suppressed close to the inlet, and pushed further and further downstream at larger 
values of the axial flow. The distance of the TW state localization from the inlet 1 finally 
diverges at the critical value of the group velocity S* which defines the transition from 
absolute to convective instability. Therefore at S* convective rolls are ablown~~ out of the 
channel, and in the convectively unstable region one does not observe any pattern at all. 
Flow-induced propagating rolls exhibit a unique wave number selection [6]. Particularly 
surprising, one finds a complete absence of the stabilizing effect of the outlet sidewall, and 
the striking difference between the absence of flow patterns in the convectively unstable 
regime in this system and the rich variety of them in a closed convective system, i.e. 
downstream distance 1 approaches zero in a closed-flow system and infinity in the system 
considered, at the transition from the absolute to the convective instability regime. Here we 
would like to point out once more that the difference in the pattern behaviour is due to zero 
value of the velocity amplitude at the inlet boundary. In an infinite system similar pattern 
behaviour can be produced by suppressing the velocity amplitude somewhere in the interior 
of the system. 

We expected that somewhat similar phenomena should be observed in a Couette-Taylor 
(CT) vortex flow subjected to an axial flow. On the other hand, the major difference between 
the RB and the CT systems in lateral boundary conditions may show up in this problem. 
Experimental evidence of the existence of propagating Taylor vortices with the super- 
imposed throughflow was obtained in early studies [7]. Although various pattern selection 
and stability were the subject of the research[7], suppression of the Taylor vortex 
instability and existence of the oscillatory bifurcation were clearly demonstrated. 

In this letter we concentrate on scaling properties and wave number selection of TW in 
the CT flow subjected to the axial flow in both convective and absolute instability regimes. 
Since there are no theoretical calculations for this specific system we compare our results 
with the theory developed for the RB convection with a lateral throughflow [6]. 

In the experiment we used a standard CT column installed horizontally and modified by 
an axial flow arrangement. The CT column and the superimposed throughflow are both 
temperature stabilized at the f 10 mK level. Good temperature stabilization is a crucial part 
of the experiment due to substantial temperature dependence of the viscosity of the working 
fluid. As a working fluid a mixture of 32.4% by volume of glycerol in water at 22°C 
(v = 3.03cS) was used. An axial flow was driven by gravity in a closed loop, and its average 
flow charge was measured by a precise flowmeter in the range from 2 .  to 1.5 cm/s with a 
maximal resolution of 1 . cm/s. It was cross-checked by laser Doppler velocimetry 
(LDV) measurements in a Poiseuille flow regime before transition to TW. In order to make 
the axial flow as uniformly as possible in an azimuthal direction a stainless-steel net 
((0.25 x 0.25) mm2 mesh size) was used as nonrotating lateral boundaries on both sides of the 
column. Together with an inlet chamber and flow directors they produced a fairly 
homogeneous axial flow. Geometrical parameters of the column are: radius of inner cylinder 
is R1 = 1.900cm7 radius of outer cylinder is R2=2.685cm (radius aspect ratio is 0.707), 
length aspect ratio is 27. Most of the measurements were performed by LDV, but 
visualization by adding 1% Kalliroscope was also used. In the latter case a video camera with 
a frame grabber was used to perform an image analysis. 

In fig. 1 we present for comparison two sets of measurements: the open squares 
represent the experimentally determined velocity amplitude of the stationary Taylor 
vortices (without an axial flow), and the solid squares are the measurements of the velocity 
amplitude of TW near the outlet in the presence of the axial flow at Reynolds number 
Re = @d/v = 1.25 both as a function of the control parameter E .  (8 is the average velocity of 
the axial flow, d = R2 - R1, E = (T- T,(Re))/(T,(Re)), T = (4v2d4)/(1 - r;2)(Q/v)2, r; = R1/R2.) 
( E  here corresponds to ,U in ref. [6].) 
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Fig. 1. - Amplitude of axial velocity vs. E for two sets of data: open squares without throughflow, and 
solid squares for Re = 1.25 (velocity values on the left and right sides, respectively). Insert: stability 
diagram of CT flow with axial flow. Open squares are convective instability, solid squares are absolute 
instability limit. They are obtained from plots in fig. 1 (see text). 

A fit by the amplitude equation gives the critical value of the Taylor number T, which 
should correspond to the neutral line obtained by the linear stability analysis. Data for the 
velocity amplitude as a function of E at Re = 1.25 exhibits its typical behaviour at  Re # 0. The 
sudden fall of the velocity amplitude at E = 0.01 reflects the fact of expelling TW out of the 
system (fig. 1). Thus, this value of €(Re) should be close to the transition value from the 
absolute to convective instability e,,,,(Re). Therefore, by performing measurements of the 
velocity amplitude as a function of T at the fixed values of Re one can reproduce both the 
convective and absolute instability lines for the CT flow subjected to the axial flow. These 
results are presented on the insert of fig. 1. Relatively large scatter of the experimental data 
for the convective instability line at larger Re is explained by the fitting procedure: at  larger 
values of Re the data should be extrapolated far away to get E,(Re). Both stability 
boundaries can be fitted by parabolic curves, respectively: T,(Re) - T,(O) = 
=aRe2, a=  12.2 for convective and a=58.3 for absolute boundaries (broken and solid 
curves, respectively). The functional dependence is a direct manifestation of symmetry, but 
the coefficient value cannot be obtained from linear stability analysis[8a] as pointed out 
already in ref. [8b]. We emphasize here that no pattern is observed between these two lines. 
We can compare the absolute instability boundary with the theoretical criterion suggested 
in ref. [6] E(Re),,, = z!S2/[4t!(1 + e!) ] ,  where zo, to, S and cl are the coefficients of the GL 
equation (S denotes the group velocity). In the range 0 < E < E,,,, TW are carried away from 
the system by axial flow. At E > E,,,,(Re> the CT flow becomes absolutely unstable, and the 
pattern can grow and expand upstream when the control parameter increases until TW fill 
the system completely. Figure 2 presents the experimental result together with the 
theoretical curve where we use values for T~ and to from ref. [9], and we also use the fact that 
for the RB convection S = V,h and c! is extremely small. Both approximations are definitely 
inside the error bars. Vph, the phase velocity, was defined experimentally by tracing the 
wave front at successive times using a video camera and an image processing card, and was 
found to be v p h  = 1.05577. From fig. 2 one concludes that experimental data are described 
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Fig. 2.  Fig. 3. 

Fig. 2.  - Stability diagram of CT flow in E vs. Re coordinates (Re is calculated from Vp& Solid curve is 
the theoretical curve (ref. [61). 

Fig. 3. - Profiles of TW velocities (A(.rolSo)/fl vs. distance from the inlet in units of d at Re = 1.77: 
open squares: E = 0.042, solid squares: E = 0.034, diamonds: E = 0.03. Insert: the time-averaged axial 
velocity component (squares) and the velocity amplitude of the propagating Taylor vortices (bars) vs. 
distance from the inlet for Re=0.45 and ~ = 0 . 0 1 2  (measured at 0.2d from the inner cylinder). 

fairly well by the theory up to Re = 1.35, but then strongly deviate from the theoretical 
curve into the region of larger Re. Two sets of points are plotted: one set (open squares) was 
obtained from the solid squares in the insert of fig. 1, and the second one (solid squares) was 
obtained by measuring the distance from the inlet 1 and extrapolating it to infinity, at fixed 
E .  Both sets of data agree well. At R e 2 4  one observes the spiral pattern at the absolute 
instability line but we will not discuss this pattern in this letter. 

At the absolute instability boundary the growth rate of a localized perturbation is just 
equal to the downstream drift due to axial flow. At smaller velocity the pattern can expand 
toward the inlet into the interior of the system. Then TW produces a stationary amplitude 
profile whose distance from the inlet 1 decreases, while the control parameter E increases 
until the pattern fills the system completely. This statement is illustrated in fig. 3 where the 
scaled envelope of TW velocity (amplitudes are scaled with E ” ~ )  is plotted as a function of 
distance from the inlet for different values of E and at  fixed Re = 1.77. We would like to point 
out here that the velocity amplitudes, presented in fig. 1 and 3, are just related to the time 
periodic signal measured by LDV. Particularly close to the inlet and outlet this time 
modulation is observed on top of the regular Ekman vortices which exist near the lateral 
boundaries in a CT flow (see the insert in fig. 3). The detailed studies [lo] show that the 
Ekman vortices are almost not influenced by the Poiseuille flow, while the amplitude of TW 
reaches zero at the lateral boundaries. This fact, probably, explains the similarity in RB and 
CT behaviour. A general scaling of I, = c1l2 Uto at different values of S, = S(zo/to)[~(l + 
was suggested and verified numerically in ref. [6]. Figure 4 presents all experimental data 
for the scaled length 1, vs. the scaled group velocity S,. One finds two different parts of this 
curve. At S, < 2 the scaled length 1, increases with S, and at  the transition line S,* = 2 
probably diverges. The corresponding fit gives I, = 1.19(S,* - S,)-o.6 (solid line). These data 
belong to Re S 1.35 which in fig. 2 are described well by the suggested criterion for the 
transition from the convective to absolute instability. The rest of the data at  Re > 1.35 do 
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not satisfy the criterion, and one finds finite values of 1, at S,  > 2. The fit of these data gives 
1, = 2.26(2.71- S,)-1.46 (broken line). Thus this plot indicates the same discrepancy with the 
theory[6] which was already demonstrated in fig. 2. 

Fig. 4. 
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Fig. 4. - Scaled distance 1, vs. scaled group velocity S,. Open squares: Re = 1.25, diamonds: Re = 1, 
triangles: Re = 0.86, circles: Re = 0.56, solid squares: Re = 1.77. Solid and broken lines are fit to the 
data (see text). 

Fig. 5. -Wave numbers k vs. Re. Representative error bars are shown. Different symbols (diamonds, 
triangles, solid and open squares) correspond to different initial states prepared with different k at 
R e = 0 .  (Open square at Re=O corresponds to k,.) Dash-dotted, dotted and broken lines show 
consequent k selected in the presence of flow with corresponding values of Re. Insert: wave number 
k ( ~ , ~ , ~ )  vs. E,,,,. The solid line is a fit to  the part of the data below Re < 1.25. 

The wave number selection of TW as a function of Re is demonstrated in fig. 5. We find 
that the bulk wavelength is independent of initial value of k prepared at  Re = 0, hence the 
axial flow uniquely selects the wavelength. As seen from the plot in fig. 5 ,  k increases with 
Re analogous to the theoretical predictions for RB convection with throughflow [6]. 
Nevertheless we did not observe the dependence of k on E within our resolution in the range 
of the control parameters studied. In the insert of fig. 5 we present also the asymptotic 
values of the wave number on the boundary line between the absolute and convective 
instability regimes. We would expect that the wave number selection on the transition line 
S$=2  should be similar to the selection behind the propagating front [3,11]. The 
corresponding selection behind the front of propagating waves was calculated [3] and at 
small values of c1 and c2 holds k(Econv) - k,  = (c1 + c2) ~ " ~ / 2 5 ~ ,  where c1 and c2 are coefficients in 
GL equations [6]. Since according to ref. [6] cl + cz = nRe, one can fit the data in the insert of 
fig. 5 by k - k ,  = n(c/To). The fit gives n = 0.87 at  Re S 1.25, whereas for the convection flow 
n is at least an order of magnitude less [6]. 
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