„Mintázat 2.óra” változatai közötti eltérés

Innen: TételWiki
(Árnyékleképezés (shadowgraph))
(Árnyékleképezés (shadowgraph))
22. sor: 22. sor:
  
 
A fenti, balról a második ábrán látható gradiens indexű lencse (gradient index lens) éppen úgy fókuszálja (vagy defókuszálja) a fényt, ahogy az árnyékleképezés során az inhomogén anyagok keresztülhaladó fénnyel is történik. A lencse működését a fenti ábra jól szemlélteti. Egy egyszerű, (például) kocka alakú tárgyról van szó, melynek törésmutatója inhomogén és így a domború lencsékhez hasonlóan fókuszálja a fényt.
 
A fenti, balról a második ábrán látható gradiens indexű lencse (gradient index lens) éppen úgy fókuszálja (vagy defókuszálja) a fényt, ahogy az árnyékleképezés során az inhomogén anyagok keresztülhaladó fénnyel is történik. A lencse működését a fenti ábra jól szemlélteti. Egy egyszerű, (például) kocka alakú tárgyról van szó, melynek törésmutatója inhomogén és így a domború lencsékhez hasonlóan fókuszálja a fényt.
 +
 +
===Példa: Rayleigh-Bénard áramlás vizualizálása===
 +
Az árnyékleképezés bemutatására jó példa az alulról fűtött folyadékban (pl. szilikonolaj) kialakuló Rayleigh-Bénard áramlás. Ha elég nagy a függőleges hőmérséklet-gradiens (a pontos képletet egy későbbi órán), folyadékáramlás indul meg. Az alul lévő melegebb (emiatt kisebb sűrűségű) anyag fölfelé, míg a fölül lévő hidegebb (emiatt nagyobb sűrűségű) anyag lefelé igyekszik. Így kialakulhat egy körkörös föl- és leáramlás.
 +
 +
<gallery widths=200px heights=200px caption="A Rayleigh-Bénard áramlás vizualizálása árnyékleképezéssel">
 +
Image:rayleigh-bénard-oldalról.png|Az áramlás oldalnézetből
 +
Image:shadowgraph-rayleigh-bénard.png|A berendezés vázlatos képe
 +
Image:rayleigh-bénard-felülről-fotó.png|Az áramlás árnyékképe felülről, 1 cm vastag olajréteg esetén, 1<sup>o</sup>C-os hőmérsékletkülönbségnél.
 +
</gallery>
 +
 +
===Árnyékleképezés napfénnyel===
 +
A Nap, mint fényforrás előnyei, hogy intenzív és nagyon nagy objektumokra is alkalmazható. Hátránya, hogy nem pontszerű, emiatt a keletkező kép széle elmosódott lesz. A felbontási küszöböt az alábbi vázlatos ábra alapján a következő egyenletekkel becsüljük.
 +
 +
[[Image:nap-fényforrás.png|center|thumb|400px|A Nap, mint fényforrás alkalmazása során a felbontási küszöb becslése]]
 +
 +
<p align="center"><math>\frac{\delta}{g} = tan \left( \frac{1}{2}^o \right) = 0,009</math><br>
 +
<math>\Delta a = g \cdot tan \epsilon</math><br>
 +
<math>\frac{\Delta a}{\delta} = \frac{tan \epsilon}{\tan \left( \frac{1}{2}^o \right)} \approx \frac{\epsilon}{\frac{1}{2}^o}</math><br></p>
 +
 +
A fenti képletekből látható, hogy túl nagy, vagy túl kicsi relatív ernyőtávolság <math>\left( \frac{g}{d} \right)</math> esetén nem lesz jó a kép. Az optimális távolság: <math>20 \le \frac{g}{d} \le 30</math> között van.
  
 
==Schlieren technika==
 
==Schlieren technika==

A lap 2011. december 17., 13:34-kori változata

Az alábbi órán a különböző kísérleti technikák működési elvével foglalkoztunk. Fontos tudni, hogy a jelen órán vizsgált rendszereknél a válasz nem lineáris a perturbációval, azaz ha van két megoldásunk, akkor ezek lineárkombinációja nem lesz megoldás. A továbbiakban ezen az órán olyan technikákkal fogunk foglalkozni, amelyek segítségével a kis amplitudójú, vagy bonyolult geometriájú esetben a térbeli struktúrákat láthatóvá lehet tenni.

Kísérleti technikák

A következő technikákkal foglalkozunk az alábbiakban:

  • Árnyékleképezés (shadowgraph), schlieren technika
  • Polarizációs mikroszkópia (kettőstörés), fáziskontraszt és interferencia mikroszkópia
  • Periodikus struktúrák detektálása diffrakcióval (helyérzékeny fotodetektorok)
  • Sebességmérés áramlásokban (Particle Image Velocimetry - PIV, Particle Tracking)
  • Nem átlátszó rendszerek belsejében lejátszódó jelenségek vizualizálása (index matching, PEPT, DWS, MRI, CT)
  • CCD és CMOS szenzorok tulajdonságai

Árnyékleképezés (shadowgraph)

Lényege: intenzív, monokromatikus fényforrással optikai inhomogenitások árnyékképét hozzuk létre. A jelenség alapja, hogy a fény az optikailag sűrűbb közeg felé törik (hajlik el - lásd lentebb a bal oldali ábrát). Egy inhomogén optikai közeg (például egy gyertyaláng) különböző részei fókuszálják, más részei pedig defókuszálják a beérkező fénynyalábot, így kialakul egy árnyékkép. Az árnyékkép alakjából pedig következtetni tudunk a megfigyelt minta sűrűségeloszlására. Természetesen ez a technika csak optikailag átlátszó közegek esetén (pl. levegő, víz, üveg) alkalmazható.

A fenti, balról a második ábrán látható gradiens indexű lencse (gradient index lens) éppen úgy fókuszálja (vagy defókuszálja) a fényt, ahogy az árnyékleképezés során az inhomogén anyagok keresztülhaladó fénnyel is történik. A lencse működését a fenti ábra jól szemlélteti. Egy egyszerű, (például) kocka alakú tárgyról van szó, melynek törésmutatója inhomogén és így a domború lencsékhez hasonlóan fókuszálja a fényt.

Példa: Rayleigh-Bénard áramlás vizualizálása

Az árnyékleképezés bemutatására jó példa az alulról fűtött folyadékban (pl. szilikonolaj) kialakuló Rayleigh-Bénard áramlás. Ha elég nagy a függőleges hőmérséklet-gradiens (a pontos képletet egy későbbi órán), folyadékáramlás indul meg. Az alul lévő melegebb (emiatt kisebb sűrűségű) anyag fölfelé, míg a fölül lévő hidegebb (emiatt nagyobb sűrűségű) anyag lefelé igyekszik. Így kialakulhat egy körkörös föl- és leáramlás.

Árnyékleképezés napfénnyel

A Nap, mint fényforrás előnyei, hogy intenzív és nagyon nagy objektumokra is alkalmazható. Hátránya, hogy nem pontszerű, emiatt a keletkező kép széle elmosódott lesz. A felbontási küszöböt az alábbi vázlatos ábra alapján a következő egyenletekkel becsüljük.

A Nap, mint fényforrás alkalmazása során a felbontási küszöb becslése

\frac{\delta}{g} = tan \left( \frac{1}{2}^o \right) = 0,009
\Delta a = g \cdot tan \epsilon
\frac{\Delta a}{\delta} = \frac{tan \epsilon}{\tan \left( \frac{1}{2}^o \right)} \approx \frac{\epsilon}{\frac{1}{2}^o}

A fenti képletekből látható, hogy túl nagy, vagy túl kicsi relatív ernyőtávolság \left( \frac{g}{d} \right) esetén nem lesz jó a kép. Az optimális távolság: 20 \le \frac{g}{d} \le 30 között van.

Schlieren technika

Polarizációs mikroszkópia (kettőstörés)

Fáziskontraszt mikroszkópia

Interferencia mikroszkópia

Periodikus struktúrák detektálása diffrakcióval (helyérzékeny fotodetektorok)

Sebességmérés áramlásokban (Particle Image Velocity - PIV)

Sebességmérés áramlásokban (Particle Tracking)

Nem átlászó rendszerek belsejében lejátszódó jelenségek vizualizálása (index matching)

Nem átlászó rendszerek belsejében lejátszódó jelenségek vizualizálása (PEPT, DWS, MRI, CT)

CCD és CMOS szenzorok tulajdonságai

<<<Vissza az óra nyitólapjára

Hivatkozások