„Véletlen gráfok generálása, tulajdonságai” változatai közötti eltérés

Innen: TételWiki
(Watts-Strogratz gráf)
(Barabássy-Albert gráf)
28. sor: 28. sor:
 
*Az átlagos legrövidebb út hamarabb csökken, mint a klaszterezettség, egyszerre kisvilág és klaszterezett
 
*Az átlagos legrövidebb út hamarabb csökken, mint a klaszterezettség, egyszerre kisvilág és klaszterezett
  
==Barabássy-Albert gráf==
+
==Barabási-Albert gráf==
 +
Preferenciális csatolás (preferential attachment) modell.
 +
 
 +
*M db kezdőcsúcs tetszőlegesen összekötve
 +
*Minden lépésben egy új csúcs, E db éllel
 +
*Véletlenszerű, hogy melyik csúcshoz csatlakoznak az új élek, de a meglévő csúcsok fokszáma alapján preferencia: <math>p(n) = \frac{d(n)}{\sum_{i=1}^N d(i)}</math>, ahol <math>d(n)<math> az n-edik csúcs fokszáma
 +
 
 +
===Tulajdonságai===
 +
*A fokszámeloszlás hatványfüggvényt követ
 +
*Kisvilág
 +
*NEM klaszterezett
  
 
==Robosztusság==
 
==Robosztusság==
  
 
==Klaszterezettség==
 
==Klaszterezettség==

A lap 2011. június 8., 15:40-kori változata

Rengeteg mindent fel lehet írni gráf alakban: internetes honlapok, szociális hálók, metabolikus folyamatok, szerzőségi hálók, tápláléklánc, körfolyamatok a fizikában és a biológiában, linux kernel stb.

Alapfogalmak

  • Egy gráf csúcsokból és élekből áll (lehet egy vagy több él két csúcs között, lehet a gráf irányított/irányítatlan, súlyozott/súlyozatlan).
  • Gráf reprezentációja: mutatókkal, él-listákkal, vagy összekötöttségi mátrixokkal.
  • Csúcs fokszáma: ahány él csatlakozik (fut be, vagy megy ki) a csúcshoz.
  • Fokszám-eloszlás: egy gráf teljes fokszám-gyakoriság diagramja.

Kisvilág tulajdonság

Legyen a gráf összes csúcsának száma N. Két tetszőleges csúcs közötti legrövidebb út: legkevesebb csúcs érintésével. Legrövidebb utak átlagos hossza: l.

Kisvilág tulajdonság: l \approx log(N)

Erdős-Rényi gráf

  • N csúcsból áll
  • Minden két csúcs között p valószínűséggel él
  • Csúcsok növelésével exponenciálisan nő a kapcsolatszám
  • Kisvilág tulajdonság, ha összefüggő. Szinte mindig összefüggő, mivel az óriáskomponens gyorsan kialakul, p \sim \frac{1}{N} + \epsilon. Az egyes komponenseken belül is kisvilág tulajdonság.

Watts-Strogratz gráf

A "kisvilág" modell, tetszőleges D dimenzióban megvalósítható.

  • N csúcs, kiinduláskor rendezett rács, szabályos k-szomszédság
  • Két módszer: "átdrótozás" (rewiring), vagy "levágások" (shortcuts). Előbbinél a meglévő éleket helyezzük át, utóbbinál új éleket vezetünk be két csúcs között - mindkét esetben p valószínűséggel tesszük ezt minden csúcspárra
  • Az átlagos legrövidebb út hamarabb csökken, mint a klaszterezettség, egyszerre kisvilág és klaszterezett

Barabási-Albert gráf

Preferenciális csatolás (preferential attachment) modell.

  • M db kezdőcsúcs tetszőlegesen összekötve
  • Minden lépésben egy új csúcs, E db éllel
  • Véletlenszerű, hogy melyik csúcshoz csatlakoznak az új élek, de a meglévő csúcsok fokszáma alapján preferencia: p(n) = \frac{d(n)}{\sum_{i=1}^N d(i)}, ahol <math>d(n)<math> az n-edik csúcs fokszáma

Tulajdonságai

  • A fokszámeloszlás hatványfüggvényt követ
  • Kisvilág
  • NEM klaszterezett

Robosztusság

Klaszterezettség