„Véletlen gráfok generálása, tulajdonságai” változatai közötti eltérés
(→Erdős-Rényi gráf) |
(→Erdős-Rényi gráf) |
||
16. sor: | 16. sor: | ||
==Erdős-Rényi gráf== | ==Erdős-Rényi gráf== | ||
− | N csúcsból áll | + | *N csúcsból áll |
+ | *Minden két csúcs között p valószínűséggel él | ||
+ | *Csúcsok növelésével exponenciálisan nő a kapcsolatszám | ||
+ | *Kisvilág tulajdonság, ha összefüggő. Szinte mindig összefüggő, mivel az óriáskomponens gyorsan kialakul, <math>p \sim \frac{1}{N} + \epsilon</math>. Az egyes komponenseken belül is kisvilág tulajdonság. | ||
==Barabássy-Albert gráf== | ==Barabássy-Albert gráf== |
A lap 2011. június 8., 15:23-kori változata
Rengeteg mindent fel lehet írni gráf alakban: internetes honlapok, szociális hálók, metabolikus folyamatok, szerzőségi hálók, tápláléklánc, körfolyamatok a fizikában és a biológiában, linux kernel stb.
Tartalomjegyzék
Alapfogalmak
- Egy gráf csúcsokból és élekből áll (lehet egy vagy több él két csúcs között, lehet a gráf irányított/irányítatlan, súlyozott/súlyozatlan).
- Gráf reprezentációja: mutatókkal, él-listákkal, vagy összekötöttségi mátrixokkal.
- Csúcs fokszáma: ahány él csatlakozik (fut be, vagy megy ki) a csúcshoz.
- Fokszám-eloszlás: egy gráf teljes fokszám-gyakoriság diagramja.
Kisvilág tulajdonság
Legyen a gráf összes csúcsának száma N. Két tetszőleges csúcs közötti legrövidebb út: legkevesebb csúcs érintésével. Legrövidebb utak átlagos hossza: l.
Kisvilág tulajdonság:
Erdős-Rényi gráf
- N csúcsból áll
- Minden két csúcs között p valószínűséggel él
- Csúcsok növelésével exponenciálisan nő a kapcsolatszám
- Kisvilág tulajdonság, ha összefüggő. Szinte mindig összefüggő, mivel az óriáskomponens gyorsan kialakul, . Az egyes komponenseken belül is kisvilág tulajdonság.