„Véletlen gráfok generálása, tulajdonságai” változatai közötti eltérés

Innen: TételWiki
(Erdős-Rényi gráf)
20. sor: 20. sor:
 
*Csúcsok növelésével exponenciálisan nő a kapcsolatszám
 
*Csúcsok növelésével exponenciálisan nő a kapcsolatszám
 
*Kisvilág tulajdonság, ha összefüggő. Szinte mindig összefüggő, mivel az óriáskomponens gyorsan kialakul, <math>p \sim \frac{1}{N} + \epsilon</math>. Az egyes komponenseken belül is kisvilág tulajdonság.
 
*Kisvilág tulajdonság, ha összefüggő. Szinte mindig összefüggő, mivel az óriáskomponens gyorsan kialakul, <math>p \sim \frac{1}{N} + \epsilon</math>. Az egyes komponenseken belül is kisvilág tulajdonság.
 +
 +
==Watts-Strogratz gráf==
  
 
==Barabássy-Albert gráf==
 
==Barabássy-Albert gráf==

A lap 2011. június 8., 15:25-kori változata

Rengeteg mindent fel lehet írni gráf alakban: internetes honlapok, szociális hálók, metabolikus folyamatok, szerzőségi hálók, tápláléklánc, körfolyamatok a fizikában és a biológiában, linux kernel stb.

Alapfogalmak

  • Egy gráf csúcsokból és élekből áll (lehet egy vagy több él két csúcs között, lehet a gráf irányított/irányítatlan, súlyozott/súlyozatlan).
  • Gráf reprezentációja: mutatókkal, él-listákkal, vagy összekötöttségi mátrixokkal.
  • Csúcs fokszáma: ahány él csatlakozik (fut be, vagy megy ki) a csúcshoz.
  • Fokszám-eloszlás: egy gráf teljes fokszám-gyakoriság diagramja.

Kisvilág tulajdonság

Legyen a gráf összes csúcsának száma N. Két tetszőleges csúcs közötti legrövidebb út: legkevesebb csúcs érintésével. Legrövidebb utak átlagos hossza: l.

Kisvilág tulajdonság: l \approx log(N)

Erdős-Rényi gráf

  • N csúcsból áll
  • Minden két csúcs között p valószínűséggel él
  • Csúcsok növelésével exponenciálisan nő a kapcsolatszám
  • Kisvilág tulajdonság, ha összefüggő. Szinte mindig összefüggő, mivel az óriáskomponens gyorsan kialakul, p \sim \frac{1}{N} + \epsilon. Az egyes komponenseken belül is kisvilág tulajdonság.

Watts-Strogratz gráf

Barabássy-Albert gráf

Robosztusság

Klaszterezettség