Harmonikus oszcillátor energiája, Hamilton operátora

Innen: TételWiki
A lap korábbi változatát látod, amilyen Birol (vitalap | szerkesztései) 2011. június 26., 22:38-kor történt szerkesztése után volt.
(eltér) ← Régebbi változat | Aktuális változat (eltér) | Újabb változat→ (eltér)

E_n = \hbar \omega (n + \frac{1}{2}), \quad n=0,\,1,\,2,\, \ldots

\mathcal{H} = \hbar \omega \left(\hat{N} + \frac{1}{2}\right) = \hbar \omega \left(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}\right)= \frac{\hat{p}^2}{2m} + \frac{m \omega^2}{2}\hat{x}^2.