| \textstyle \frac{x}{y}    | 
  \frac{x}{y}
 | 
| \textstyle \sum_x^n     | 
  \sum_{x=1}^{n}
 | 
| \textstyle \prod_x^n     | 
  \prod^{x=1}_{n}
 | 
| \textstyle \int_a^b     | 
  \int_{a}^{b} f (x)\,dx
 | 
| \textstyle  \frac{\partial x}{\partial y}   | 
  \frac{\partial x}{\partial y}
 | 
| \textstyle \sqrt x    | 
  \sqrt{x}
 | 
| \textstyle \sqrt[3]{x}   | 
  \sqrt[3]{x}
 | 
| \textstyle f(x)   | 
  f(x)
 | 
| \lim    | 
  \lim_{x\to\infty}
 | 
|  ***
 | 
| \sin    | 
  \sin (x)
 | 
| \cos    | 
  \cos (x)
 | 
| \tan    | 
  \tan (x)
 | 
| \log    | 
  \log (x)
 | 
| \ln    | 
  \ln (x)
 | 
|  ***
 | 
| \le    | 
  \le
 | 
| \ge    | 
  \ge
 | 
| \neq    | 
  \neq
 | 
| \approx    | 
  \approx
 | 
| \equiv    | 
  \equiv
 | 
| \propto    | 
  \propto
 | 
| \infty    | 
  \infty
 | 
|  ***
 | 
| \alpha    | 
  \alpha
 | 
| \beta    | 
  \beta
 | 
| \gamma    | 
  \gamma
 | 
| \delta    | 
  \delta
 | 
| \epsilon    | 
  \epsilon
 | 
| \zeta    | 
  \zeta
 | 
| \eta    | 
  \eta
 | 
| \theta   | 
  \theta
 | 
| \vartheta   | 
  \vartheta
 | 
| \kappa    | 
  \kappa
 | 
| \lambda    | 
  \lambda
 | 
| \mu    | 
  \mu
 | 
| \xi    | 
  \xi
 | 
| \pi    | 
  \pi
 | 
| \rho    | 
  \rho
 | 
| \sigma    | 
  \sigma
 | 
| \tau    | 
  \tau
 | 
| \phi    | 
  \phi
 | 
| \varphi    | 
  \varphi
 | 
| \chi    | 
  \chi
 | 
| \psi    | 
  \psi
 | 
| \omega    | 
  \omega
 | 
|  ***
 | 
| \Rightarrow    | 
  \Rightarrow
 | 
| \rightarrow   | 
  \rightarrow
 | 
| \Leftarrow  | 
  \Leftarrow
 | 
| \leftarrow    | 
  \leftarrow
 | 
| \Leftrightarrow  | 
  \Leftrightarrow
 | 
| \vec{x}   | 
  \vec{x}
 | 
|  ***
 | 
| (    | 
  \left(
 | 
| )    | 
  \right)
 | 
| [    | 
  \left[
 | 
| ]    | 
  \right]
 | 
| \{    | 
  \left{
 | 
| \}    | 
  \right}
 | 
| \textstyle {n \choose k}   | 
 {n \choose k}
 | 
|  ***
 | 
| \Box  | 
 \Box
 | 
| \forall  | 
 \forall
 | 
| \exists  | 
 \exists
 | 
| \in  | 
 \in
 | 
| \not\in  | 
 \not\in
 | 
|  ***
 | 
| \mbox{Taylor}  | 
 f(x) = \sum_{k=0}^{\infty } \frac{ f^{k} (a) }{ k! } (x - a)^k
 | 
| \mbox{Euler}^1  | 
 e^{i \varphi } := \cos \varphi   + i \sin \varphi
 |