„Dinamikai rendszerek, kaotikus viselkedés” változatai közötti eltérés

Innen: TételWiki
a
1. sor: 1. sor:
 
== Dinamikus rendszerek elmélete ==
 
== Dinamikus rendszerek elmélete ==
 +
A dinamikai rendszerek elmélete csatolt differenciálegyenletek tulajdonságával foglalkozik, amiknek az időfejlődését néhány paraméter határozza meg. A rendszer időfejlődésének vizsgálata a paraméterek állapotterében zajlik.
 +
 +
===Alapfogalmak===
 +
====Fixpont és határciklus====
 +
Fixpontnak azt nevezzük, amikor a rendszer hosszú idő után a fázistér egy pontjában található meg. A fixpont lehet stabil (kis kitérésre visszatér), és instabil (kis kitérésre nem tér vissza). A határciklus a fázistérben egy zárt trajektória, amin a rendszer az idő előrehaladtával körbejár. Szintén lehet stabil vagy instabil.
 +
====Bifurkáció====
 +
Bifurkációról akkor beszélünk, amikor egy külső paraméter hatására a rendszer hosszú távú viselkedése kvalitatívan megváltozik (pl.: 1 fixpont → 2 fixpont, fixpont → határciklus, stb.)
 +
====Poincaré-metszet====
 +
A rendszer időfejlődését, főleg ha az d>3 dimenziós, nagyon nehéz grafikusan ábrázolni. Ezért a fázistérnek és egy síknak a metszetét vizsgáljuk. Ha egy közel periodikus pálya metszi a síkot (a fázistér egy ''alterét''), akkor egy periódusidő múlva újra metszeni fogja, közel az előző ponthoz. Belátható, hogy egy pálya akkor periodikus, ha a Poincaré-metszetnek fixpontja.
 +
====Ljapunov-exponens====
 +
A Ljapunov-exponenssel az számszerűsíthetjük, hogy a fázistérben két közeli trajektória milyen gyorsan távolodik egymástól. Ha kezdetben <math>\delta Z_0</math> távolságra voltak, akkor az időben a távolságuk <math>|\delta Z_0(t)| \approx e^{\lambda t}|\delta Z_0|</math> szerint növekszik (vagy csökken, ha <math>\lambda<0</math>).
 +
 
== Determinisztikus káosz ==
 
== Determinisztikus káosz ==
 
== Káosz disszipatív rendszerekben ==
 
== Káosz disszipatív rendszerekben ==

A lap 2011. június 10., 15:11-kori változata

Dinamikus rendszerek elmélete

A dinamikai rendszerek elmélete csatolt differenciálegyenletek tulajdonságával foglalkozik, amiknek az időfejlődését néhány paraméter határozza meg. A rendszer időfejlődésének vizsgálata a paraméterek állapotterében zajlik.

Alapfogalmak

Fixpont és határciklus

Fixpontnak azt nevezzük, amikor a rendszer hosszú idő után a fázistér egy pontjában található meg. A fixpont lehet stabil (kis kitérésre visszatér), és instabil (kis kitérésre nem tér vissza). A határciklus a fázistérben egy zárt trajektória, amin a rendszer az idő előrehaladtával körbejár. Szintén lehet stabil vagy instabil.

Bifurkáció

Bifurkációról akkor beszélünk, amikor egy külső paraméter hatására a rendszer hosszú távú viselkedése kvalitatívan megváltozik (pl.: 1 fixpont → 2 fixpont, fixpont → határciklus, stb.)

Poincaré-metszet

A rendszer időfejlődését, főleg ha az d>3 dimenziós, nagyon nehéz grafikusan ábrázolni. Ezért a fázistérnek és egy síknak a metszetét vizsgáljuk. Ha egy közel periodikus pálya metszi a síkot (a fázistér egy alterét), akkor egy periódusidő múlva újra metszeni fogja, közel az előző ponthoz. Belátható, hogy egy pálya akkor periodikus, ha a Poincaré-metszetnek fixpontja.

Ljapunov-exponens

A Ljapunov-exponenssel az számszerűsíthetjük, hogy a fázistérben két közeli trajektória milyen gyorsan távolodik egymástól. Ha kezdetben \delta Z_0 távolságra voltak, akkor az időben a távolságuk |\delta Z_0(t)| \approx e^{\lambda t}|\delta Z_0| szerint növekszik (vagy csökken, ha \lambda<0).

Determinisztikus káosz

Káosz disszipatív rendszerekben

Diffúzió

Ismét sokadszorra:)

Zaj dominált rendszerek

MSc záróvizsga tételek
Tételek Soktest rendszerek | Transzportfolyamatok | Véletlen gráfok generálása, tulajdonságai | Elsőrendű és folytonos fázisátalakulások | Válasz- és korrelációs függvények, fluktuáció-disszipáció tétel | Sztochasztikus folyamatok | A statisztikus fizikai szimulációk alapjai és a Monte Carlo módszer | Dinamikai rendszerek, kaotikus viselkedés | Adatelemzés: lineáris és nem lineáris regresszió egy modellen bemutatva | Adatelemzés: bootstrap modellek | TCP hálózat működése | Adatelemzés: ARCH, GARCH folyamatok | Numerikus módszerek | Vizualizációs módszerek