„Numerikus módszerek” változatai közötti eltérés

Innen: TételWiki
51. sor: 51. sor:
  
 
Ha <math>h_1>h_0</math>, akkor meg kell ismételni a számolást egy kisebb lépéssel, ha pedig <math>h_1<h_0</math>, akkor a következő lépésben használhatjuk <math>h_0</math>-t lépésként.
 
Ha <math>h_1>h_0</math>, akkor meg kell ismételni a számolást egy kisebb lépéssel, ha pedig <math>h_1<h_0</math>, akkor a következő lépésben használhatjuk <math>h_0</math>-t lépésként.
 +
 +
==Egyenletrendszer megoldása==
 +
 +
==Optimalizációs módszerek==

A lap 2011. június 8., 16:51-kori változata

Diffegyenlet-megoldó módszerek

Euler-módszer

A legegyszerűbb egylépéses módszer. Az y(x=0)=y0 kezdőfeltétellel megadott, y’=f(x,y) diffegyenlet megoldása esetén az Euler lépés alakja (Taylor-sorfejtés első két tagja): y_(n+1)=y_n+h*f(x_n,y_n)

Euler-módszer

Hibája: Taylor-sorfejtést tovább írjuk, a különbség O(h^2) lesz. Használata nem javasolt, mert a hibák hamar felösszegződnek, a megoldás „felrobban”. Ennek elkerülésére érdemes lehet használni az implicit Euler-módszert: y_(n+1)=y_n+h*f(x_{n+1},y_{n+1}). Ez nagy h értékekre is stabil marad.

Runge-Kutta módszer

Miért használjuk? Mert sokkal pontosabb, mint az Euler-módszer.

Másodrendű RK (vagy midpoint method - középponti módszer)

k_1=h\,f(x_n,y_n)\,
k_2=h\,f \left ( x_n+\frac{1}{2} h,y_n+\frac{1}{2} k_1 \right ) \,
y_{n+1}=y_n+k_2+O(h^3)\,

RK2.png

Ez a módszer tehát harmadrendig pontos. Általánosan az n-ed rendű RK-nak O(h^{n+1}) hibája van.

Negyedrendű RK

k_1=h\,f(x_n,y_n)\,
k_2=h\,f \left ( x_n+\frac{1}{2} h,y_n+\frac{1}{2} k_1 \right ) \,
k_3=h\,f \left ( x_n+\frac{1}{2} h,y_n+\frac{1}{2} k_2 \right ) \,
k_4=h\,f(x_n+h,y_n+k_3)\,
y_{n+1} = y_n + \frac{1}{6} k_1 + \frac{1}{3} k_2 + \frac{1}{3} k_3 + \frac{1}{6} k_4 + O(h^5)

Rk4 sajat.png

A negyedrendű módszerben négyszer kell kiértékelni az f függvényt, míg az Euler-módszernél egyszer kellett. Ezért ennek a használata akkor gazdaságos, ha ugyanakkora pontosság mellett legalább négyszer akkora lehet a lépésköz.

Adaptív RK

Egy differenciálegyenlet megoldása során lehetnek gyorsan és lassan változó szakaszok a függvényben. A lassan változó szakaszok integrálása során nagyobb lépéseket is tehetünk a hiba növekedése nélkül. Ennek a megoldására szolgál az adaptív Runge-Kutta módszer. Alapötlete, hogy egy lépést tegyünk meg egyszer teljesen (2h-val, y_1), egyszer pedig két fél lépésben (h-val, y_2). Mindegyik lépés 4 függvény kiértékelést igényel (3*4), de ebből kettő megegyezik, így 11 kiértékelés szükséges a 2*4 helyett, ami a két fél lépésből jönne össze.

y(x+2h) = y_1 + (2h)^5 \Phi + O(h^6)\,
y(x+2h) = y_1 + 2(h^5) \Phi + O(h^6)\,

A kettő közti különbség:

\Delta = y_2 - y_1\,

A különbség h^5-nel skálázik. Ha egy h_1 lépés eredménye \Delta_1, és mi \Delta_0 hibát akarunk elérni, akkor h_0 lépést kell tennünk, ami: h_0 = h_1 \left | \frac{\Delta_0}{\Delta_1} \right | ^{0.2}

Ha h_1>h_0, akkor meg kell ismételni a számolást egy kisebb lépéssel, ha pedig h_1<h_0, akkor a következő lépésben használhatjuk h_0-t lépésként.

Egyenletrendszer megoldása

Optimalizációs módszerek