„Relativisztikus kvantummechanika” változatai közötti eltérés
a |
|||
78. sor: | 78. sor: | ||
==A Dirac-egyenlet== | ==A Dirac-egyenlet== | ||
+ | |||
+ | ===A Dirac-egyenlet bevezetése=== | ||
Szeretnénk egy, a Schrödinger-egyenlethez hasonló alakú (időben elsőrendű), de a relativitáselmélettel összhangban levő egyenletet bevezetni. A Schrödinger-egyenlet ismert alakja: | Szeretnénk egy, a Schrödinger-egyenlethez hasonló alakú (időben elsőrendű), de a relativitáselmélettel összhangban levő egyenletet bevezetni. A Schrödinger-egyenlet ismert alakja: | ||
123. sor: | 125. sor: | ||
A jobboldali összeg minden tagjában a deriválás <math>\Psi</math> minden komponensére külön hat, majd az <math>\alpha</math> mátrixokkal szorzás a komponensek között hat a szokásos mátrixszorzási szabályok szerint. | A jobboldali összeg minden tagjában a deriválás <math>\Psi</math> minden komponensére külön hat, majd az <math>\alpha</math> mátrixokkal szorzás a komponensek között hat a szokásos mátrixszorzási szabályok szerint. | ||
+ | |||
+ | |||
+ | ===A Dirac-egyenlet kovariáns alakja=== | ||
+ | |||
+ | Szorozzuk be a Dirac-egyenlet korábban megkapott alakját a <math>\beta</math> mátrixxal és rendezzük úgy, hogy az egyik oldalon 0 legyen. Így kapjuk a Dirac-egyenlet kovariáns alakját: | ||
+ | |||
+ | <math>\left ( i \hbar \gamma^{\mu} \partial{\mu} - m \right ) \Psi = 0</math> | ||
+ | |||
+ | Ehhez bevezettük a Dirac-mátrixokat: | ||
+ | |||
+ | <math>\gamma^0 \equiv \beta = \left ( \begin{array}{cc} \operatorname{I} & 0 \\ 0 & \operatorname{I} \end{array} \right ) \quad \quad \gamma^i \equiv \beta \alpha_i = \left ( \begin{array}{cc} 0 & \sigma_i \\ -\sigma_i & 0 \end{array} \right )</math> | ||
+ | |||
+ | A komponensek kiírva: | ||
+ | |||
+ | |||
+ | <math> | ||
+ | \gamma^0 = \left ( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right ) \quad \quad | ||
+ | \gamma^1 = \left ( \begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{array} \right ) | ||
+ | </math> | ||
+ | |||
+ | <math> | ||
+ | \gamma^2 = \left ( \begin{array}{cccc} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{array} \right ) \quad \quad | ||
+ | \gamma^3 = \left ( \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right ) | ||
+ | </math> | ||
+ | |||
+ | A Dirac-mátrixok tulajdonságai: | ||
+ | |||
+ | * Mindegyik mátrix unitér | ||
+ | |||
+ | * <math>\gamma^0</math> hermitikus | ||
+ | |||
+ | * <math>\gamma^i</math> antihermitikusak (<math>i = 1,2,3</math>) | ||
+ | |||
+ | * fennáll az antikommutátor reláció: <math> \left \{ \gamma^{\mu}, \gamma^{\nu} \right \} = 2 \eta^{\mu \nu}</math> | ||
+ | |||
+ | Megjegyzés: A fenti tulajdonságok használhatóak a Dirac-mátrixok definiálására. Az összefüggések megoldása nem egyértelmű, de bármely négy mátrix, ami teljesíti a követelményeket megfelelő a fizikai leíráshoz (a mátrixok matematikailag unitér ekvivalensek, ugyanazt a fizikát írják le). | ||
+ | |||
+ | Megjegyzés 2: Az irodalomban gyakran használt jelölés: <math> \partialslash \eqiuv \gamma^{\mu} \partial_{\mu}</math> (itt egy áthúzott parciális d betűvel kellene jelölni a <math>\gamma^{\mu} \partial_{\mu}</math> szorzatot) | ||
+ | |||
+ | Definiáljuk a hullámfüggvény Dirac-konjugáltját: | ||
+ | |||
+ | <math> \overline{\Psi} \equiv \Psi^{+} \gamma^0</math> | ||
+ | |||
+ | Itt a <math>\Psi^{+}</math> transzponált azt a sorvektort jelenti, aminek az elemei <math>\Psi</math> elemeinek a komplex konjugáltjai, így a Dirac-konjugált is egy sorvektor. Ezzel bevezethetjük a Dirac-egyenlethez tartozó négyes áramsűrűséget: | ||
+ | |||
+ | <math>j^{\mu} \equiv \overline{\Psi} \gamma^{\mu} \Psi</math> | ||
+ | |||
+ | Ennek a komponensei a Dirac-indexek (<math>\Psi</math> komponensei) szempontjából skalárok lesznek (a definícióban minden komponensnél egy sorvektor, egy mátrix és egy oszlopvektor szorzata szerepel, ennek az eredménye egy szám). Viszont belátható, hogy a Lorentz-transzformációk szempontjából <math>j^{\mu}</math> négyesvektorként viselkedik, a <math>\overline{\Psi} \Psi </math> mennyiség pedig négyesskalár. |
A lap 2009. szeptember 13., 20:06-kori változata
Ebben a részben
Tartalomjegyzék
A Klein-Gordon egyenlet
Legyen egy részecske hullámfüggvénye, mint egy inerciarendszerbeli tér- és időkoordináták skalárfüggvénye. Erre szeretnénk felírni egy kovariáns egyenletet, ami összhangban van a relativitáselmélettel. Ehhez induljunk ki a egyenletből, és helyettesítsük a fizikai mennyiségeket a klasszikus kvantummechanikából ismert operátoraikkal. Az impulzus operátora: , az energiát az időderiváltnak feleltethetjük meg: , a tömeg pedig itt is egy állandó. Így a fenti egyenletnek megfelelő operátorokat a hullámfüggvényre hattatva a következő egyenletet kapjuk:
Ez a Klein-Gordon egyenlet. Ezt felírhatjuk négyesvektoros alakban is. Az energia és impulzus közötti összefüggés (diszperziós reláció) négyesvektorosan: . Az előző megfeleltetés operátoroknak ekkor: . A Klein-Gordon egyenlet ilyen alakban:
A Klein-Gordon egyenlet síkhullám megoldásait egyszerűen felírhatjuk:
Ezt az egyenletbe behelyettesítve láthatjuk, hogy kielégíti azt, ha teljesül a feltétel. Ez azt jelenti, hogy a négyesvektor komponenseiből csak 3 független. Legyyenek a komponensek: , így ezekre a diszperziós reláció adódik. A kvantummechanikában szokásos értelmezés szerint az energia (ez az időderiválás operátor sajátértéke is) . Formálisan a pozitív energiás megoldás mellett van egy negatív energiájú is (ez jelenti majd az antirészecskéket).
Eddig még nem beszéltünk arról, hogy milyen részecskék leírására alkalmas a Klein-Gordon egyenlet, felmerül a kérdés, hogy ez az egyenlet alkalmas-e a Schrödinger egyenlet relativisztikus általánosításaként. Elvileg ezzel az egyenlettel 0 spinű részecskéket lehetne leírni, a valóságban azonban nincs olyan elemi részecske, amit csak a Klein-Gordon egyenlet írna le (a fotonokra felírható hullámegyenletek hasonlóak, de ott nem egy skalármező, hanem a potenciálokból álló négyesvektor komponensei szerepelnek). Ennek ellenére érdemes megvizsgálni, hogyha lennének ilyen részecskék, akkor milyen tulajdonságokkal rendelkeznének. A Schrödinger-egyenletnél a hullámfüggvény abszolútértékének négyzete megtalálási valószínűségsűrűségként volt értelmezhető. Kérdéses, hogy itt lehet-e ehhez hasonló megállapításokat tenni. Ehhez írjuk fel a Klein-Gordon egyenletet és a komplex konjugáltját:
Szorozzuk meg az eredeti egyenletet (balról) -al, a komplex konjugált egyenletet -vel, és vonjuk ki a kettőt egymásból. Az eredmény:
Azt kaptuk, hogy egy négyesvektor divergenciája 0. Ez lehetőséget ad egy négyesáram bevezetésére, amire egy megmaradási tétel (kontinuitási egyenlet) írható fel. Legyen:
Ekkor fennáll, hogy . A komponenseket formában írva ez egy kontinuitási egyenlet jelent:
Az egész térre integrálva azt kapjuk, hogy a sűrűség integrálja állandó:
Ez alapján azt lehetne mondani, hogy a Schrödinger egyenletnél bevezethető valószínűségsűrűséghez hasonlóan viselkedik, ennek ellenére nem lehet valószínűségsűrűségként értelmezni, mert a Schrödinger-egyenletnél használt abszolútértéknégyzettel szemben értéke nem csak pozitív lehet, hanem negatív is. Ez abból következik, hogy a Klein-Gordon egyenlet időben másodrendű, így kezdőfeltételként -t és az idő szerinti deriváltját tetszőlegesen lehet megválasztani, úgy is, hogy egyes helyeken negatív legyen.
Így a Klein-Gordon megoldásainak nem lehet a Schrödinger-egyenletnél megszokott valószínűségi értelmezést adni. Abban az esetben viszont, ha töltött részecskékről van szó, egy töltés áramsűrűséget lehet bevezetni. Legyen ekkor:
Az előző definícióhoz képest az egyetlen eltérés a részecskék töltésegységét jelentő szorzó, így négyes áramsűrűségként értelmezhető (a kontinuitási egyenlet ugyanúgy teljesül rá). A nulladik komponenes a töltéssűrűség:
A térszerű komponensek a hármas áramsűrűséget adják:
Az össztöltés megmarad:
Ezzel szemben értéke egy adott pontban tetszőlegesen változhat, lehet pozitív és negatív is. Ez azt jelenti, hogy a Klein-Gordon egyenlettel nem lehet egy rögzített (pozitív vagy negatív) töltésű részecskét leírni, az időfejlődés során megjelenhetnek ellentétes töltésű tartományok, ennek magyarázata az, hogy minden részecskének létezik ellentétes töltésű antirészecskéje, és a részecskék és antirészecskék száma nem marad meg, csak az össztöltés, keletkezhetnek és annihilálódhatnak részecske-antirészecske párok. Ennek a teljes leírására azonban a Klein-Gordon egyenlet jelenlegi formája nem alkalmas, el kell végezni a tér második kvantálását. Ezt itt nem tesszük meg, az antirészecskék jelenlétét viszont a síkhullám megoldásokon is tudjuk egyszerűen szemléltetni. Ehhez írjuk fel az előbbi síkhullám megoldást (a szokásos és jelöléseket használva):
Itt tetszőleges (hármas) vektor, és érvényes az diszperziós reláció. Legyen a pozitív megoldás , így , a különböző előjelhez tartozó megoldások külön felírva:
Az ezekből számolt töltéssűrűségek (a deriválást elvégezve):
Az egyik esetben a töltéssűrűség pozitív, a másikban negatív. Ezt úgy lehet értelmezni, hogy a megoldás töltésű, a megoldás töltésű részecskéket ír le.
A Dirac-egyenlet
A Dirac-egyenlet bevezetése
Szeretnénk egy, a Schrödinger-egyenlethez hasonló alakú (időben elsőrendű), de a relativitáselmélettel összhangban levő egyenletet bevezetni. A Schrödinger-egyenlet ismert alakja:
Szeretnénk, ha a Hamilton-operátor összhangban lenne a relativitáselmélet összefüggésével. Tegyük fel, hogy létezik egy ilyen operátor, ami előáll az impulzusok (térszerinti deriváltak) és a tömeg (mint számmal szorzás) lineárkombinációjaként, és a négyzetére teljesül a relativisztikus energia-impulzus összefüggés (a továbbiakban a latin betűs indexek a térszerű koordinátákat jelölik: , rájuk is vonatkozik a kétszer előforduló indexre automatikus összegzés szabálya):
A fenti feltételeknek nincs megoldása abban az esetben, ha az és együtthatók számok, így keressük úgy a megoldást, hogy a hullámfüggvény több komponensű (oszlopvektor) és az együtthatók mátrixok. Így a feltételeink:
- Legyen egy komponensű vektor, a komponenseit jelölje
- Legyen a mennyiség egy megmaradó 4-es áram nulladik komponense
- Teljesüljön a relativisztikus összefüggés. Ez azt jelenti, hogy minden komponense kielégíti a Klein-Gordon egyenletet
- Legyen az egyenlet kovariáns, azaz teljesítse azt a feltételt, hogy mindkét oldalán a Lorentz-transzformációk szempontjából ugyanúgy transzformálódó mennyiségek szerepelnek
Megmutatható, hogy ezek a feltételek az együtthatómátrixokra a következő egyenleteket adják:
A kapcsos zárójelek az antikommutátorokat jelentik. Ezeket az egyenleteket legkevesebb -es mátrixokkal lehet kielégíteni, léteznek magasabb dimenziójú megoldások is, mi a továbbiakban csak az esettel foglalkozunk. Ebben az esetben a megoldás (igazából több megoldás lehetséges, de ezek nem függetlenek egymástól, így elég csak egyet vizsgálni):
Itt a -es egységmátrix, a mátrixok a Pauli-mátrixok. A komponensek kiírva:
A hullámfüggvény pedig egy négy komponensű vektor lesz. Nagyon fontos megjegyeznünk, hogy nem négyesvektor (a relativitáselméletben bevezetett módon), a komponenseit nem lehet a négyesvektorokra ható Lorentz-mátrixokkal transzformálni, matematikailag egy másik tér eleme. A továbbiakban az együtthatómátrixok és komponenseinek az indexeit általában elhagyjuk, azok között a mátrixalgebrában szokásos műveletek érvényesek. Az mátrixok indexei a mátrix sorszámát jelentik. Egyes esetekben nehéz számontartani a különböző fajta vektorok komponenseit, a lényeg az, hogy a differenciáloperátorok minden komponensére külön hatnak, egy együtthatómátrix pedig a mátrixszorzás szabályai szerint hat. A Dirac-egyenlet így felírva:
A jobboldali összeg minden tagjában a deriválás minden komponensére külön hat, majd az mátrixokkal szorzás a komponensek között hat a szokásos mátrixszorzási szabályok szerint.
A Dirac-egyenlet kovariáns alakja
Szorozzuk be a Dirac-egyenlet korábban megkapott alakját a mátrixxal és rendezzük úgy, hogy az egyik oldalon 0 legyen. Így kapjuk a Dirac-egyenlet kovariáns alakját:
Ehhez bevezettük a Dirac-mátrixokat:
A komponensek kiírva:
A Dirac-mátrixok tulajdonságai:
- Mindegyik mátrix unitér
- hermitikus
- antihermitikusak ()
- fennáll az antikommutátor reláció:
Megjegyzés: A fenti tulajdonságok használhatóak a Dirac-mátrixok definiálására. Az összefüggések megoldása nem egyértelmű, de bármely négy mátrix, ami teljesíti a követelményeket megfelelő a fizikai leíráshoz (a mátrixok matematikailag unitér ekvivalensek, ugyanazt a fizikát írják le).
Megjegyzés 2: Az irodalomban gyakran használt jelölés: Értelmezés sikertelen (Hiányzó <code>texvc</code> végrehajtható fájl; a beállítást lásd a math/README fájlban.): \partialslash \eqiuv \gamma^{\mu} \partial_{\mu} (itt egy áthúzott parciális d betűvel kellene jelölni a szorzatot)
Definiáljuk a hullámfüggvény Dirac-konjugáltját:
Itt a transzponált azt a sorvektort jelenti, aminek az elemei elemeinek a komplex konjugáltjai, így a Dirac-konjugált is egy sorvektor. Ezzel bevezethetjük a Dirac-egyenlethez tartozó négyes áramsűrűséget:
Ennek a komponensei a Dirac-indexek ( komponensei) szempontjából skalárok lesznek (a definícióban minden komponensnél egy sorvektor, egy mátrix és egy oszlopvektor szorzata szerepel, ennek az eredménye egy szám). Viszont belátható, hogy a Lorentz-transzformációk szempontjából négyesvektorként viselkedik, a mennyiség pedig négyesskalár.