„Dinamikai rendszerek, kaotikus viselkedés” változatai közötti eltérés
1. sor: | 1. sor: | ||
− | == | + | == Dinamikai rendszerek elmélete == |
A dinamikai rendszerek elmélete csatolt differenciálegyenletek tulajdonságával foglalkozik, amiknek az időfejlődését néhány paraméter határozza meg. A rendszer időfejlődésének vizsgálata a paraméterek állapotterében zajlik. | A dinamikai rendszerek elmélete csatolt differenciálegyenletek tulajdonságával foglalkozik, amiknek az időfejlődését néhány paraméter határozza meg. A rendszer időfejlődésének vizsgálata a paraméterek állapotterében zajlik. | ||
10. sor: | 10. sor: | ||
A rendszer időfejlődését, főleg ha az d>3 dimenziós, nagyon nehéz grafikusan ábrázolni. Ezért a fázistérnek és egy síknak a metszetét vizsgáljuk. Ha egy közel periodikus pálya metszi a síkot (a fázistér egy ''alterét''), akkor egy periódusidő múlva újra metszeni fogja, közel az előző ponthoz. Belátható, hogy egy pálya akkor periodikus, ha a Poincaré-metszetnek fixpontja. | A rendszer időfejlődését, főleg ha az d>3 dimenziós, nagyon nehéz grafikusan ábrázolni. Ezért a fázistérnek és egy síknak a metszetét vizsgáljuk. Ha egy közel periodikus pálya metszi a síkot (a fázistér egy ''alterét''), akkor egy periódusidő múlva újra metszeni fogja, közel az előző ponthoz. Belátható, hogy egy pálya akkor periodikus, ha a Poincaré-metszetnek fixpontja. | ||
====Ljapunov-exponens==== | ====Ljapunov-exponens==== | ||
− | A Ljapunov-exponenssel az számszerűsíthetjük, hogy a fázistérben két közeli trajektória milyen gyorsan távolodik egymástól. Ha kezdetben <math>\delta Z_0</math> távolságra voltak, akkor az időben a távolságuk <math>|\delta Z_0(t)| \approx e^{\lambda t}|\delta Z_0|</math> szerint növekszik | + | A Ljapunov-exponenssel az számszerűsíthetjük, hogy a fázistérben két közeli trajektória milyen gyorsan távolodik egymástól. Ha kezdetben <math>\delta Z_0</math> távolságra voltak, akkor az időben a távolságuk <math>|\delta Z_0(t)| \approx e^{\lambda t}|\delta Z_0|</math> szerint növekszik. |
+ | ====Attraktor==== | ||
+ | A fázistér vonzó halmaza, vagyis olyan halmaza, amely felé a trajektóriák közelednek. Disszipatív rendszerekben fordulnak elő, fázistérfogatuk zérus. | ||
== Determinisztikus káosz == | == Determinisztikus káosz == | ||
+ | Az egyszerű, kevés összetevőből álló rendszerek szabálytalan mozgását kaotikusnak nevezzük. Jellemzői: | ||
+ | * nem ismétli önmagát | ||
+ | * nem jelezhető előre, mert érzékeny a kezdőfeltételekre, melyeket véges pontossággal ismerünk | ||
+ | * a visszatérési szabály bonyolult geometriájú (pl.: hely-sebesség ábrázolásban egy komplex, de szabályos szerkezet jelenik meg) | ||
+ | A valós folyamatok leírásában (egyszerű rendszerekre, pl.: kettős inga) fel tudjuk írni a rendszert mozgató differenciálegyenleteket, viszont a kezdőfeltételeket csak valamekkora hibával ismerjük. Mivel a kaotikus mozgás hibaerősítő, a mozgást a rövid előrejelzési időn túl követve a bizonytalanság eléri az egész attraktor méretét. Az ilyen mozgás tehát előre jelezhetetlen,rendszerint a fázistér fraktálalakzataihoz kötött, és hosszú távú leírása egy időfüggetlen valószínűségeloszlással lehetséges. | ||
+ | |||
+ | A legismertebb példája a determinisztikus káosznak a logisztikus leképzés. Ezt nem differenciálegyenlettel írjuk le, hanem a másik lehetséges módon, leképezés formában, ami a következő: <math>x_{n+1} = r\,x_n(1-x_n)</math>. Az x változó a [0:1] tartományon értelmezhető, az r paraméter pedig [0:4] lehet. A leképezést populációdinamikai modellekben szokták használni, ahol x a populáció hányada a teljes lehetséges populációhoz, az r pedig a szaporodási és a pusztulási ráta kombinációja. | ||
+ | <!-- este folytatom --> | ||
+ | |||
== Káosz disszipatív rendszerekben == | == Káosz disszipatív rendszerekben == | ||
== Diffúzió == | == Diffúzió == |
A lap 2011. június 10., 16:08-kori változata
Tartalomjegyzék
Dinamikai rendszerek elmélete
A dinamikai rendszerek elmélete csatolt differenciálegyenletek tulajdonságával foglalkozik, amiknek az időfejlődését néhány paraméter határozza meg. A rendszer időfejlődésének vizsgálata a paraméterek állapotterében zajlik.
Alapfogalmak
Fixpont és határciklus
Fixpontnak azt nevezzük, amikor a rendszer hosszú idő után a fázistér egy pontjában található meg. A fixpont lehet stabil (kis kitérésre visszatér), és instabil (kis kitérésre nem tér vissza). A határciklus a fázistérben egy zárt trajektória, amin a rendszer az idő előrehaladtával körbejár. Szintén lehet stabil vagy instabil.
Bifurkáció
Bifurkációról akkor beszélünk, amikor egy külső paraméter hatására a rendszer hosszú távú viselkedése kvalitatívan megváltozik (pl.: 1 fixpont → 2 fixpont, fixpont → határciklus, stb.)
Poincaré-metszet
A rendszer időfejlődését, főleg ha az d>3 dimenziós, nagyon nehéz grafikusan ábrázolni. Ezért a fázistérnek és egy síknak a metszetét vizsgáljuk. Ha egy közel periodikus pálya metszi a síkot (a fázistér egy alterét), akkor egy periódusidő múlva újra metszeni fogja, közel az előző ponthoz. Belátható, hogy egy pálya akkor periodikus, ha a Poincaré-metszetnek fixpontja.
Ljapunov-exponens
A Ljapunov-exponenssel az számszerűsíthetjük, hogy a fázistérben két közeli trajektória milyen gyorsan távolodik egymástól. Ha kezdetben távolságra voltak, akkor az időben a távolságuk szerint növekszik.
Attraktor
A fázistér vonzó halmaza, vagyis olyan halmaza, amely felé a trajektóriák közelednek. Disszipatív rendszerekben fordulnak elő, fázistérfogatuk zérus.
Determinisztikus káosz
Az egyszerű, kevés összetevőből álló rendszerek szabálytalan mozgását kaotikusnak nevezzük. Jellemzői:
- nem ismétli önmagát
- nem jelezhető előre, mert érzékeny a kezdőfeltételekre, melyeket véges pontossággal ismerünk
- a visszatérési szabály bonyolult geometriájú (pl.: hely-sebesség ábrázolásban egy komplex, de szabályos szerkezet jelenik meg)
A valós folyamatok leírásában (egyszerű rendszerekre, pl.: kettős inga) fel tudjuk írni a rendszert mozgató differenciálegyenleteket, viszont a kezdőfeltételeket csak valamekkora hibával ismerjük. Mivel a kaotikus mozgás hibaerősítő, a mozgást a rövid előrejelzési időn túl követve a bizonytalanság eléri az egész attraktor méretét. Az ilyen mozgás tehát előre jelezhetetlen,rendszerint a fázistér fraktálalakzataihoz kötött, és hosszú távú leírása egy időfüggetlen valószínűségeloszlással lehetséges.
A legismertebb példája a determinisztikus káosznak a logisztikus leképzés. Ezt nem differenciálegyenlettel írjuk le, hanem a másik lehetséges módon, leképezés formában, ami a következő: . Az x változó a [0:1] tartományon értelmezhető, az r paraméter pedig [0:4] lehet. A leképezést populációdinamikai modellekben szokták használni, ahol x a populáció hányada a teljes lehetséges populációhoz, az r pedig a szaporodási és a pusztulási ráta kombinációja.
Káosz disszipatív rendszerekben
Diffúzió
Ismét sokadszorra:)