„Véletlen gráfok generálása, tulajdonságai” változatai közötti eltérés

Innen: TételWiki
(Alapfogalmak)
(Alapfogalmak)
14. sor: 14. sor:
 
<math>c_i = \frac{2e_i}{k_i(k_i-1)}</math>, ahol <math>e_i</math> az i-edik csúcs szomszédai közti élek száma. Átlagos klaszterezettség: <math><c> = \frac{1}{N}\sum(c_i)</math>
 
<math>c_i = \frac{2e_i}{k_i(k_i-1)}</math>, ahol <math>e_i</math> az i-edik csúcs szomszédai közti élek száma. Átlagos klaszterezettség: <math><c> = \frac{1}{N}\sum(c_i)</math>
  
Szemléletes jelentés: Ha <math>c_i = 0</math>, akkor "cillag" - ha <math>c_i = 1</math>, akkor "klikk"  
+
Szemléletes jelentés: Ha <math>c_i = 0</math>, akkor "csillag" - ha <math>c_i = 1</math>, akkor "klikk"  
 
[[Kép:csillag-klikk.jpg|center|thumb|csillag és klikk]]
 
[[Kép:csillag-klikk.jpg|center|thumb|csillag és klikk]]
 
* Távolság: (<math>l_{ij}</math>) az a minimális lépésszám i és j csúcsok között, ami alatt el lehet jutni i-ből j-be az éleket követve. (irányítatlan gráfon <math>l_{ij} = l_{ji}</math>, irányított gráfon ez nem feltétlen teljesül.)
 
* Távolság: (<math>l_{ij}</math>) az a minimális lépésszám i és j csúcsok között, ami alatt el lehet jutni i-ből j-be az éleket követve. (irányítatlan gráfon <math>l_{ij} = l_{ji}</math>, irányított gráfon ez nem feltétlen teljesül.)

A lap 2011. június 13., 14:16-kori változata

Rengeteg mindent fel lehet írni gráf alakban: internetes honlapok, szociális hálók, metabolikus folyamatok, szerzőségi hálók, tápláléklánc, körfolyamatok a fizikában és a biológiában, linux kernel stb.

Alapfogalmak

  • Egy gráf csúcsokból és élekből áll. A gráf lehet:
    • Egyszerű gráf (két pont között csak 1 él, nincs hurok egy csúcsra); Multi gráf (két pont között lehet több él, nincs hurok egy csúcsra); Pszeudo gráf (két pont között lehet több él és lehet egy csúcson hurok)
    • Irányított/Irányítatlan
    • Súlyozott/Súlyozatlan
    • Címkézett gráf: csúcs- és/vagy él-címkézett (élek/csúcsok egyéni azonosítóval rendelkeznek)
    • Biparit gráf: két fajta csúcs van és élek csak a különböző fajtájú csúcsok közt vannak (pl.: filmszínészek hálózata)
  • Gráf reprezentációja: mutatókkal, él-listákkal, vagy összekötöttségi mátrixokkal.
  • Csúcs fokszáma: a csúcs kapcsolatainak száma (irányított gráfnál lehet beszélni bejövő és kimenő fokszámról).
    • Fokszám-eloszlás: egy gráf teljes fokszám-gyakoriság diagramja. p<k> = N_k / N (ahol N_k a k fokszámú csúcsok száma, N pedig a csúcsok száma
  • Csúcs klaszterezettségi együtthatója: (csoporterősségi együttható)

c_i = \frac{2e_i}{k_i(k_i-1)}, ahol e_i az i-edik csúcs szomszédai közti élek száma. Átlagos klaszterezettség: <c> = \frac{1}{N}\sum(c_i)

Szemléletes jelentés: Ha c_i = 0, akkor "csillag" - ha c_i = 1, akkor "klikk"

csillag és klikk
  • Távolság: (l_{ij}) az a minimális lépésszám i és j csúcsok között, ami alatt el lehet jutni i-ből j-be az éleket követve. (irányítatlan gráfon l_{ij} = l_{ji}, irányított gráfon ez nem feltétlen teljesül.)

Kisvilág tulajdonság

Legyen a gráf összes csúcsának száma N. Két tetszőleges csúcs közötti legrövidebb út: legkevesebb csúcs érintésével. Legrövidebb utak átlagos hossza: l.

Kisvilág tulajdonság: l \approx log(N)

Erdős-Rényi gráf

  • N csúcsból áll
  • Minden két csúcs között p valószínűséggel él

Tulajdonságok

  • Csúcsok növelésével exponenciálisan nő a kapcsolatszám
  • Kisvilág tulajdonság, ha összefüggő. Szinte mindig összefüggő, mivel az óriáskomponens gyorsan kialakul, p \sim \frac{1}{N} + \epsilon. Az egyes komponenseken belül is kisvilág tulajdonság
  • Klaszterezettsége: C=\frac{z}{N-1}, ahol z az átlagos fokszám, N pedig az összes csúcs száma

Watts-Strogratz gráf

A "kisvilág" modell, tetszőleges D dimenzióban megvalósítható.

  • N csúcs, kiinduláskor rendezett rács, szabályos k-szomszédság
  • Két módszer: "átdrótozás" (rewiring), vagy "levágások" (shortcuts). Előbbinél a meglévő éleket helyezzük át, utóbbinál új éleket vezetünk be két csúcs között - mindkét esetben p valószínűséggel tesszük ezt minden csúcspárra
  • Az átlagos legrövidebb út hamarabb csökken, mint a klaszterezettség, egyszerre kisvilág és klaszterezett

Barabási-Albert gráf

Preferenciális csatolás (preferential attachment) modell.

  • M db kezdőcsúcs tetszőlegesen összekötve
  • Minden lépésben egy új csúcs, E db éllel
  • Véletlenszerű, hogy melyik csúcshoz csatlakoznak az új élek, de a meglévő csúcsok fokszáma alapján preferencia: p(n) = \frac{d(n)}{\sum_{i=1}^N d(i)}, ahol d(n) az n-edik csúcs fokszáma

Tulajdonságai

  • A fokszámeloszlás hatványfüggvényt követ
  • Kisvilág
  • NEM klaszterezett

Robosztusság

Más néven ellenállóság véletlen hibákkal, vagy támadásokkal szemben.

Miért fontos? Robosztus számítógép-hálózatok, fajok védelme, járvány-védelem, információ-terjedés elleni "védelem" stb.

Klaszterezettség

A klaszterezettségi együttható azt mondja meg, hogy mekkora a valószínűsége annak, hogy egy adott csúcs szomszédai egymással is szomszédok.


MSc záróvizsga tételek
Tételek Soktest rendszerek | Transzportfolyamatok | Véletlen gráfok generálása, tulajdonságai | Elsőrendű és folytonos fázisátalakulások | Válasz- és korrelációs függvények, fluktuáció-disszipáció tétel | Sztochasztikus folyamatok | A statisztikus fizikai szimulációk alapjai és a Monte Carlo módszer | Dinamikai rendszerek, kaotikus viselkedés | Adatelemzés: lineáris és nem lineáris regresszió egy modellen bemutatva | Adatelemzés: bootstrap modellek | TCP hálózat működése | Adatelemzés: ARCH, GARCH folyamatok | Numerikus módszerek | Vizualizációs módszerek