„Dinamikai rendszerek, kaotikus viselkedés” változatai közötti eltérés
a |
a (→Sztochasztikus szökés) |
||
(7 közbenső módosítás, amit 2 másik szerkesztő végzett, nincs mutatva) | |||
1. sor: | 1. sor: | ||
− | == | + | == Dinamikai rendszerek elmélete == |
+ | A dinamikai rendszerek elmélete csatolt differenciálegyenletek tulajdonságával foglalkozik, amiknek az időfejlődését néhány paraméter határozza meg. A rendszer időfejlődésének vizsgálata a paraméterek állapotterében zajlik. | ||
+ | |||
+ | ===Alapfogalmak=== | ||
+ | ====Fixpont és határciklus==== | ||
+ | Fixpontnak azt nevezzük, amikor a rendszer hosszú idő után a fázistér egy pontjában található meg. A fixpont lehet stabil (kis kitérésre visszatér), és instabil (kis kitérésre nem tér vissza). A határciklus a fázistérben egy zárt trajektória, amin a rendszer az idő előrehaladtával körbejár. Szintén lehet stabil vagy instabil. | ||
+ | ====Bifurkáció==== | ||
+ | Bifurkációról akkor beszélünk, amikor egy külső paraméter hatására a rendszer hosszú távú viselkedése kvalitatívan megváltozik (pl.: 1 fixpont → 2 fixpont, fixpont → határciklus, stb.) | ||
+ | ====Poincaré-metszet==== | ||
+ | A rendszer időfejlődését, főleg ha az d>3 dimenziós, nagyon nehéz grafikusan ábrázolni. Ezért a fázistérnek és egy síknak a metszetét vizsgáljuk. Ha egy közel periodikus pálya metszi a síkot (a fázistér egy ''alterét''), akkor egy periódusidő múlva újra metszeni fogja, közel az előző ponthoz. Belátható, hogy egy pálya akkor periodikus, ha a Poincaré-metszetnek fixpontja. | ||
+ | ====Ljapunov-exponens==== | ||
+ | A Ljapunov-exponenssel az számszerűsíthetjük, hogy a fázistérben két közeli trajektória milyen gyorsan távolodik egymástól. Ha kezdetben <math>\delta Z_0</math> távolságra voltak, akkor az időben a távolságuk <math>|\delta Z_0(t)| \approx e^{\lambda t}|\delta Z_0|</math> szerint növekszik. | ||
+ | ====Attraktor==== | ||
+ | A fázistér vonzó halmaza, vagyis olyan halmaza, amely felé a trajektóriák közelednek. Disszipatív rendszerekben fordulnak elő, fázistérfogatuk zérus. | ||
+ | |||
== Determinisztikus káosz == | == Determinisztikus káosz == | ||
+ | Az egyszerű, kevés összetevőből álló rendszerek szabálytalan mozgását kaotikusnak nevezzük. Jellemzői: | ||
+ | * nem ismétli önmagát | ||
+ | * nem jelezhető előre, mert érzékeny a kezdőfeltételekre, melyeket véges pontossággal ismerünk | ||
+ | * a visszatérési szabály bonyolult geometriájú (pl.: hely-sebesség ábrázolásban egy komplex, de szabályos szerkezet jelenik meg) | ||
+ | A valós folyamatok leírásában (egyszerű rendszerekre, pl.: kettős inga) fel tudjuk írni a rendszert mozgató differenciálegyenleteket, viszont a kezdőfeltételeket csak valamekkora hibával ismerjük. Mivel a kaotikus mozgás hibaerősítő, a mozgást a rövid előrejelzési időn túl követve a bizonytalanság eléri az egész attraktor méretét. Az ilyen mozgás tehát előre jelezhetetlen,rendszerint a fázistér fraktálalakzataihoz kötött, és hosszú távú leírása egy időfüggetlen valószínűségeloszlással lehetséges. | ||
+ | |||
+ | A legismertebb példája a determinisztikus káosznak a logisztikus leképzés. Ezt nem differenciálegyenlettel írjuk le, hanem a másik lehetséges módon, leképezés formában, ami a következő: <math>x_{n+1} = r\,x_n(1-x_n)</math>. Az x változó a [0:1] tartományon értelmezhető, az r paraméter pedig [0:4] lehet. A leképezést populációdinamikai modellekben szokták használni, ahol x a populáció hányada a teljes lehetséges populációhoz, az r pedig a szaporodási és a pusztulási ráta kombinációja. Az x<sub>n</sub> sorozat viselkedését az r paraméter határozza meg. Ha r<3, akkor 1 fixpont van, ha 3<r<3.4, akkor 2 fixpont van, stb. Hogy melyik r értéknél milyen viselkedést tapasztalunk, a [http://en.wikipedia.org/wiki/File:LogisticMap_BifurcationDiagram.png bifurkációs diagramról] olvashatjuk le. Még több a logisztikus leképezésről [http://en.wikipedia.org/wiki/Logistic_map itt]. | ||
+ | |||
== Káosz disszipatív rendszerekben == | == Káosz disszipatív rendszerekben == | ||
+ | Disszipatív rendszerről akkor beszélünk, amikor a rendszer energiája súrlódás hatására folyamatosan csökken. Ha nem tudjuk a rendszerünket egy mechanikai rendszernek megfeleltetni, akkoronnan vehetjük észre a disszipációt, hogy a fázistérben a fázistérfogat csökken (nullához tart). Az egyik legegyszerűbb példa disszipatív rendszerre a súrlódásos matematikai inga: | ||
+ | |||
+ | <math>\ddot{\Phi} + \gamma \dot{\Phi} + \omega_0^2 sin \Phi = 0</math> | ||
+ | |||
+ | Az egyenletet fel lehet írni két elsőrendű, csatolt differenciálegyenletbe az <math>x = \Phi</math> és az <math>y = \dot{\Phi}</math> helyettesítéssel: | ||
+ | |||
+ | <math>\dot{x} = y</math> | ||
+ | |||
+ | <math>\dot{y} = -\gamma y - \omega_0^2 sin x</math> | ||
+ | |||
+ | A fázistérfogat változását az alábbi egyenlet határozza meg: | ||
+ | |||
+ | <math>\frac{\Delta\dot{V}}{\Delta x \Delta y} = \frac{\Delta \dot{x}}{\Delta x} + \frac{\Delta \dot{y}}{\Delta y} = \vec{\nabla} \cdot \dot{\vec{x}}</math> | ||
+ | |||
+ | A disszipációt tehát úgy is megfogalmazhatjuk, hogy <math>\vec{\nabla} \cdot \dot{\vec{x}} < 0</math> | ||
+ | |||
+ | Hosszú idő elteltével a disszipáció egyedüli hatásként oda vezet, hogy a rendszer beáll egy infinitezinális pontba a fázistérben. Ha más hatás is van, az bizonyos irányokban ezt ellensúlyozhatja. Példa erre a Naprendszer(-ek) kialakulása: az összesűrűsödő porfelhő kezdetben gömbszimmetrikusan húzódik össze, azonban mivel csökken a tehetetlensége, forgása (ami kicsi mindig van a fluktuációk miatt) felgyorsul a perdületmegmaradás miatt. A növekvő sűrűség miatt azonban a surlódás (elemi rugalmatlan ütközések rátája) is nő, ezért egyre erősebb disszipáció lesz jellemző. A forgás és a disszipáció együtt oda vezet, hogy a fázitérfogatcsökkenés leghamarabb a forgás által kijelölt tengely mentén megy végbe, mert itt nincsenek ezt ellensúlyozó erőhatások. Ennek eredményeképpen jönnek létre a protoplanetáris korongok. Ez a tulajdonság általánosabb érvényű: a disszipáció redukálja a fázistér elérhető dimenzióinak számát. | ||
+ | |||
== Diffúzió == | == Diffúzió == | ||
− | + | <!--A determinisztikus diffúziót elő lehet állítani az alábbi módon (ugyanazt a leképezést egy egyenesre rakjuk egymás után): | |
+ | |||
+ | [[Fájl:Det_diffusion.png|700px]]--> | ||
+ | |||
+ | A determinisztikus diffúziót megfigyelhetjük a lökdösött rotátoron. Ez egy olyan rotátor, ami T időnként hirtelen impulzust kap (a lökés amplitúdója általában a hely periodikus függvénye, pl.: f(x) = a*sin x). A lökések amplitúdója bármilyen értéket felvehet a (-a,a) intervallumban, a sebesség változás ezért véletlen bolyongásnak fog megfelelni (<math>v_{n+1} = v_n +a sin(x_{n+1})\,</math>, ezért <math>-\infty < v_n < \infty</math>). A sebességtengely 2<math>\pi</math> hosszúságú intervallumán nagy számú pontot indítva azt tapasztaljuk, hogy azok a v<sub>n</sub> tengely mentén egyre jobban szétterjednek. A kaotikus dinamika tehát egy diffúziós folyamatot hozott létre. | ||
+ | |||
+ | A bolyongás során egy részecske koordinátája az i-edik lépésben éppen <math>r_i = a\,sin(x_{i+1})</math>-gyel változik meg. Ha r<sub>i</sub>-k függetlennek tekinthetők, akkor az átlag elmozdulás <math>\bar{R_n} = \bar{\Sigma r_i} = 0</math>, a négyzetes átlagos elmozdulás pedig <math>\bar{R_n^2}</math>. A függetlenség miatt igaz, hogy <math>\bar{R_n^2} = \bar{r_i^2}n</math>. A bolyongás diffúziós együtthatóját a <math>\bar{R_n^2} = 2Dn</math> képletből kifejezhetjük: <math>D = \bar{r_i^2}/2</math>. Behelyettesítve r<sub>i</sub> értékét: <math>D = \frac{1}{4}a^2</math>. | ||
+ | |||
+ | Mindebből tehát azt szűrhetjük le, hogy a determinisztikus eredetű mozgás elegendően hosszú idő alatt pont olyan folyamatot képes létrehozni, mint valamilyen külső zaj. Ez annak a megnyilvánulása, hogy a káosz véletlenszerű mozgást jelent, és ez jól definiált valószínűség-eloszlással jellemezhető. A diffúzió tehát arra ''nem'' érzékeny, hogy a bolyongást kiváltó hatás milyen eredetű. | ||
+ | |||
+ | |||
+ | == Zajjal kölcsönható rendszerek == | ||
+ | Ha egy egyébként determinisztikus rendszerhez egy külső zajt csatolunk, akkor azt áltlaánosan sztochsztikus rendszernek is nevezhetjük. Ezek számos helyen felbukkanhatnak, amikor bizonyos a rendszert érő hatásokat nem tudunk, vagy nem akarunk zárt alakban csatolni a leírásunkhoz, hanem csak valószínűségi változóként akarjuk a hatásukat figyelembe venni. | ||
+ | |||
+ | ===Sztochasztikus szökés=== | ||
+ | Tekintsünk egy részecskét, amely egy potenciál metastabil állapotában van, tehát létezik alacsonyabb állapotú helyzete, de azt egy potenciálgát miatt nem éri el. Ha erre a rendszerre egy külső zajforrást kapcsolunk, akkor ez bizonyos valószínűséggel fedezni tudja a gát legyőzéséhez szükséges energiakülönbséget, ezáltal a részecske el tudja hagyni a metastabil állapotot. Nem meglepő, hogy a metastabil potenciálgödröt harmonikus formában közelítve a szökés valószínűségére: | ||
+ | |||
+ | :<math>P \propto \mathrm{e}^{-\beta \Delta V}</math> | ||
+ | |||
+ | ahol <math>\beta \propto 1 / A</math>, ahol A a külső zaj amplitudója, <math>\Delta V</math> a potenciál gát magassága. | ||
+ | |||
+ | === Sztochasztikus rezonancia === | ||
+ | Tekintsünk egy két minimumú potenciálgödröt, amelyben mozgó részecskére zaj is hat, továbbá a potenciál minimumait perturbáljuk meg egy adott frekvenciájú amplitudóval. A zaj legyen olyan erős, hogy idnként át tudja lökni a rendszert egyik minimumból a másikba. | ||
− | + | Amikor a zaj hatására történő minimum váltás tipikus periódusideje egyezik a perturbáció periódusidejével, akkor rezonancia lép fel: a külső zaj és a perturbáció hatására a részecske mindig el tud jutni az optimálisabb helyzetbe és periódusideje követi a potenciál változásának periódusát. Túl alcsony zajszintnél a rendszer beragad az egyik minimumba, túl magas zajszintnél elnyomja a külső gerjesztés hatását. | |
+ | Hasonló folyamattal magyarázható esetleg a jégkorszakok közti változás: mind az eljegesedett, mind a jégmentes állapot stabil lenne (a plussz hő vagy elnyelődik az óceánokban, vagy visszaverődik a hóról), de a beeső sugárzás perioikusan változhat a Föld pályaelemeinek változásával, így előállhat a fenti időnként átbeillenő folyamat. | ||
{{MSc záróvizsga}} | {{MSc záróvizsga}} |
A lap jelenlegi, 2011. június 16., 16:06-kori változata
Tartalomjegyzék
Dinamikai rendszerek elmélete
A dinamikai rendszerek elmélete csatolt differenciálegyenletek tulajdonságával foglalkozik, amiknek az időfejlődését néhány paraméter határozza meg. A rendszer időfejlődésének vizsgálata a paraméterek állapotterében zajlik.
Alapfogalmak
Fixpont és határciklus
Fixpontnak azt nevezzük, amikor a rendszer hosszú idő után a fázistér egy pontjában található meg. A fixpont lehet stabil (kis kitérésre visszatér), és instabil (kis kitérésre nem tér vissza). A határciklus a fázistérben egy zárt trajektória, amin a rendszer az idő előrehaladtával körbejár. Szintén lehet stabil vagy instabil.
Bifurkáció
Bifurkációról akkor beszélünk, amikor egy külső paraméter hatására a rendszer hosszú távú viselkedése kvalitatívan megváltozik (pl.: 1 fixpont → 2 fixpont, fixpont → határciklus, stb.)
Poincaré-metszet
A rendszer időfejlődését, főleg ha az d>3 dimenziós, nagyon nehéz grafikusan ábrázolni. Ezért a fázistérnek és egy síknak a metszetét vizsgáljuk. Ha egy közel periodikus pálya metszi a síkot (a fázistér egy alterét), akkor egy periódusidő múlva újra metszeni fogja, közel az előző ponthoz. Belátható, hogy egy pálya akkor periodikus, ha a Poincaré-metszetnek fixpontja.
Ljapunov-exponens
A Ljapunov-exponenssel az számszerűsíthetjük, hogy a fázistérben két közeli trajektória milyen gyorsan távolodik egymástól. Ha kezdetben távolságra voltak, akkor az időben a távolságuk szerint növekszik.
Attraktor
A fázistér vonzó halmaza, vagyis olyan halmaza, amely felé a trajektóriák közelednek. Disszipatív rendszerekben fordulnak elő, fázistérfogatuk zérus.
Determinisztikus káosz
Az egyszerű, kevés összetevőből álló rendszerek szabálytalan mozgását kaotikusnak nevezzük. Jellemzői:
- nem ismétli önmagát
- nem jelezhető előre, mert érzékeny a kezdőfeltételekre, melyeket véges pontossággal ismerünk
- a visszatérési szabály bonyolult geometriájú (pl.: hely-sebesség ábrázolásban egy komplex, de szabályos szerkezet jelenik meg)
A valós folyamatok leírásában (egyszerű rendszerekre, pl.: kettős inga) fel tudjuk írni a rendszert mozgató differenciálegyenleteket, viszont a kezdőfeltételeket csak valamekkora hibával ismerjük. Mivel a kaotikus mozgás hibaerősítő, a mozgást a rövid előrejelzési időn túl követve a bizonytalanság eléri az egész attraktor méretét. Az ilyen mozgás tehát előre jelezhetetlen,rendszerint a fázistér fraktálalakzataihoz kötött, és hosszú távú leírása egy időfüggetlen valószínűségeloszlással lehetséges.
A legismertebb példája a determinisztikus káosznak a logisztikus leképzés. Ezt nem differenciálegyenlettel írjuk le, hanem a másik lehetséges módon, leképezés formában, ami a következő: . Az x változó a [0:1] tartományon értelmezhető, az r paraméter pedig [0:4] lehet. A leképezést populációdinamikai modellekben szokták használni, ahol x a populáció hányada a teljes lehetséges populációhoz, az r pedig a szaporodási és a pusztulási ráta kombinációja. Az xn sorozat viselkedését az r paraméter határozza meg. Ha r<3, akkor 1 fixpont van, ha 3<r<3.4, akkor 2 fixpont van, stb. Hogy melyik r értéknél milyen viselkedést tapasztalunk, a bifurkációs diagramról olvashatjuk le. Még több a logisztikus leképezésről itt.
Káosz disszipatív rendszerekben
Disszipatív rendszerről akkor beszélünk, amikor a rendszer energiája súrlódás hatására folyamatosan csökken. Ha nem tudjuk a rendszerünket egy mechanikai rendszernek megfeleltetni, akkoronnan vehetjük észre a disszipációt, hogy a fázistérben a fázistérfogat csökken (nullához tart). Az egyik legegyszerűbb példa disszipatív rendszerre a súrlódásos matematikai inga:
Az egyenletet fel lehet írni két elsőrendű, csatolt differenciálegyenletbe az és az helyettesítéssel:
A fázistérfogat változását az alábbi egyenlet határozza meg:
A disszipációt tehát úgy is megfogalmazhatjuk, hogy
Hosszú idő elteltével a disszipáció egyedüli hatásként oda vezet, hogy a rendszer beáll egy infinitezinális pontba a fázistérben. Ha más hatás is van, az bizonyos irányokban ezt ellensúlyozhatja. Példa erre a Naprendszer(-ek) kialakulása: az összesűrűsödő porfelhő kezdetben gömbszimmetrikusan húzódik össze, azonban mivel csökken a tehetetlensége, forgása (ami kicsi mindig van a fluktuációk miatt) felgyorsul a perdületmegmaradás miatt. A növekvő sűrűség miatt azonban a surlódás (elemi rugalmatlan ütközések rátája) is nő, ezért egyre erősebb disszipáció lesz jellemző. A forgás és a disszipáció együtt oda vezet, hogy a fázitérfogatcsökkenés leghamarabb a forgás által kijelölt tengely mentén megy végbe, mert itt nincsenek ezt ellensúlyozó erőhatások. Ennek eredményeképpen jönnek létre a protoplanetáris korongok. Ez a tulajdonság általánosabb érvényű: a disszipáció redukálja a fázistér elérhető dimenzióinak számát.
Diffúzió
A determinisztikus diffúziót megfigyelhetjük a lökdösött rotátoron. Ez egy olyan rotátor, ami T időnként hirtelen impulzust kap (a lökés amplitúdója általában a hely periodikus függvénye, pl.: f(x) = a*sin x). A lökések amplitúdója bármilyen értéket felvehet a (-a,a) intervallumban, a sebesség változás ezért véletlen bolyongásnak fog megfelelni (, ezért ). A sebességtengely 2 hosszúságú intervallumán nagy számú pontot indítva azt tapasztaljuk, hogy azok a vn tengely mentén egyre jobban szétterjednek. A kaotikus dinamika tehát egy diffúziós folyamatot hozott létre.
A bolyongás során egy részecske koordinátája az i-edik lépésben éppen -gyel változik meg. Ha ri-k függetlennek tekinthetők, akkor az átlag elmozdulás , a négyzetes átlagos elmozdulás pedig . A függetlenség miatt igaz, hogy . A bolyongás diffúziós együtthatóját a képletből kifejezhetjük: . Behelyettesítve ri értékét: .
Mindebből tehát azt szűrhetjük le, hogy a determinisztikus eredetű mozgás elegendően hosszú idő alatt pont olyan folyamatot képes létrehozni, mint valamilyen külső zaj. Ez annak a megnyilvánulása, hogy a káosz véletlenszerű mozgást jelent, és ez jól definiált valószínűség-eloszlással jellemezhető. A diffúzió tehát arra nem érzékeny, hogy a bolyongást kiváltó hatás milyen eredetű.
Zajjal kölcsönható rendszerek
Ha egy egyébként determinisztikus rendszerhez egy külső zajt csatolunk, akkor azt áltlaánosan sztochsztikus rendszernek is nevezhetjük. Ezek számos helyen felbukkanhatnak, amikor bizonyos a rendszert érő hatásokat nem tudunk, vagy nem akarunk zárt alakban csatolni a leírásunkhoz, hanem csak valószínűségi változóként akarjuk a hatásukat figyelembe venni.
Sztochasztikus szökés
Tekintsünk egy részecskét, amely egy potenciál metastabil állapotában van, tehát létezik alacsonyabb állapotú helyzete, de azt egy potenciálgát miatt nem éri el. Ha erre a rendszerre egy külső zajforrást kapcsolunk, akkor ez bizonyos valószínűséggel fedezni tudja a gát legyőzéséhez szükséges energiakülönbséget, ezáltal a részecske el tudja hagyni a metastabil állapotot. Nem meglepő, hogy a metastabil potenciálgödröt harmonikus formában közelítve a szökés valószínűségére:
ahol , ahol A a külső zaj amplitudója, a potenciál gát magassága.
Sztochasztikus rezonancia
Tekintsünk egy két minimumú potenciálgödröt, amelyben mozgó részecskére zaj is hat, továbbá a potenciál minimumait perturbáljuk meg egy adott frekvenciájú amplitudóval. A zaj legyen olyan erős, hogy idnként át tudja lökni a rendszert egyik minimumból a másikba.
Amikor a zaj hatására történő minimum váltás tipikus periódusideje egyezik a perturbáció periódusidejével, akkor rezonancia lép fel: a külső zaj és a perturbáció hatására a részecske mindig el tud jutni az optimálisabb helyzetbe és periódusideje követi a potenciál változásának periódusát. Túl alcsony zajszintnél a rendszer beragad az egyik minimumba, túl magas zajszintnél elnyomja a külső gerjesztés hatását.
Hasonló folyamattal magyarázható esetleg a jégkorszakok közti változás: mind az eljegesedett, mind a jégmentes állapot stabil lenne (a plussz hő vagy elnyelődik az óceánokban, vagy visszaverődik a hóról), de a beeső sugárzás perioikusan változhat a Föld pályaelemeinek változásával, így előállhat a fenti időnként átbeillenő folyamat.