„Dinamikai rendszerek, kaotikus viselkedés” változatai közötti eltérés
a |
|||
1. sor: | 1. sor: | ||
== Dinamikus rendszerek elmélete == | == Dinamikus rendszerek elmélete == | ||
+ | A dinamikai rendszerek elmélete csatolt differenciálegyenletek tulajdonságával foglalkozik, amiknek az időfejlődését néhány paraméter határozza meg. A rendszer időfejlődésének vizsgálata a paraméterek állapotterében zajlik. | ||
+ | |||
+ | ===Alapfogalmak=== | ||
+ | ====Fixpont és határciklus==== | ||
+ | Fixpontnak azt nevezzük, amikor a rendszer hosszú idő után a fázistér egy pontjában található meg. A fixpont lehet stabil (kis kitérésre visszatér), és instabil (kis kitérésre nem tér vissza). A határciklus a fázistérben egy zárt trajektória, amin a rendszer az idő előrehaladtával körbejár. Szintén lehet stabil vagy instabil. | ||
+ | ====Bifurkáció==== | ||
+ | Bifurkációról akkor beszélünk, amikor egy külső paraméter hatására a rendszer hosszú távú viselkedése kvalitatívan megváltozik (pl.: 1 fixpont → 2 fixpont, fixpont → határciklus, stb.) | ||
+ | ====Poincaré-metszet==== | ||
+ | A rendszer időfejlődését, főleg ha az d>3 dimenziós, nagyon nehéz grafikusan ábrázolni. Ezért a fázistérnek és egy síknak a metszetét vizsgáljuk. Ha egy közel periodikus pálya metszi a síkot (a fázistér egy ''alterét''), akkor egy periódusidő múlva újra metszeni fogja, közel az előző ponthoz. Belátható, hogy egy pálya akkor periodikus, ha a Poincaré-metszetnek fixpontja. | ||
+ | ====Ljapunov-exponens==== | ||
+ | A Ljapunov-exponenssel az számszerűsíthetjük, hogy a fázistérben két közeli trajektória milyen gyorsan távolodik egymástól. Ha kezdetben <math>\delta Z_0</math> távolságra voltak, akkor az időben a távolságuk <math>|\delta Z_0(t)| \approx e^{\lambda t}|\delta Z_0|</math> szerint növekszik (vagy csökken, ha <math>\lambda<0</math>). | ||
+ | |||
== Determinisztikus káosz == | == Determinisztikus káosz == | ||
== Káosz disszipatív rendszerekben == | == Káosz disszipatív rendszerekben == |
A lap 2011. június 10., 14:11-kori változata
Tartalomjegyzék
Dinamikus rendszerek elmélete
A dinamikai rendszerek elmélete csatolt differenciálegyenletek tulajdonságával foglalkozik, amiknek az időfejlődését néhány paraméter határozza meg. A rendszer időfejlődésének vizsgálata a paraméterek állapotterében zajlik.
Alapfogalmak
Fixpont és határciklus
Fixpontnak azt nevezzük, amikor a rendszer hosszú idő után a fázistér egy pontjában található meg. A fixpont lehet stabil (kis kitérésre visszatér), és instabil (kis kitérésre nem tér vissza). A határciklus a fázistérben egy zárt trajektória, amin a rendszer az idő előrehaladtával körbejár. Szintén lehet stabil vagy instabil.
Bifurkáció
Bifurkációról akkor beszélünk, amikor egy külső paraméter hatására a rendszer hosszú távú viselkedése kvalitatívan megváltozik (pl.: 1 fixpont → 2 fixpont, fixpont → határciklus, stb.)
Poincaré-metszet
A rendszer időfejlődését, főleg ha az d>3 dimenziós, nagyon nehéz grafikusan ábrázolni. Ezért a fázistérnek és egy síknak a metszetét vizsgáljuk. Ha egy közel periodikus pálya metszi a síkot (a fázistér egy alterét), akkor egy periódusidő múlva újra metszeni fogja, közel az előző ponthoz. Belátható, hogy egy pálya akkor periodikus, ha a Poincaré-metszetnek fixpontja.
Ljapunov-exponens
A Ljapunov-exponenssel az számszerűsíthetjük, hogy a fázistérben két közeli trajektória milyen gyorsan távolodik egymástól. Ha kezdetben távolságra voltak, akkor az időben a távolságuk szerint növekszik (vagy csökken, ha ).
Determinisztikus káosz
Káosz disszipatív rendszerekben
Diffúzió
Ismét sokadszorra:)