„Dinamikai rendszerek, kaotikus viselkedés” változatai közötti eltérés
(→Káosz disszipatív rendszerekben) |
(→Káosz disszipatív rendszerekben) |
||
40. sor: | 40. sor: | ||
A disszipációt tehát úgy is megfogalmazhatjuk, hogy <math>\vec{\nabla} \cdot \dot{\vec{x}} < 0</math> | A disszipációt tehát úgy is megfogalmazhatjuk, hogy <math>\vec{\nabla} \cdot \dot{\vec{x}} < 0</math> | ||
− | Hosszú idő elteltével a disszipáció egyedüli hatásként oda vezet, hogy a rendszer beáll egy infinitezinális pontba a fázistérben. Ha más hatás is van, az bizonyos irányokban ezt ellensúlyozhatja. Példa erre a Naprendszer(-ek) kialakulása: az összesűrűsödő porfelhő kezdetben gömbszimmetrikusan húzódik össze, azonban mivel csökken a tehetetlensége, forgása (ami kicsi mindig van a fluktuációk miatt) felgyorsul a perdületmegmaradás miatt. A növekvő sűrűség miatt azonban a surlódás (elemi rugalmatlan ütközések rátája) is nő, ezért egyre erősebb disszipáció lesz jellemző. A forgás és a disszipáció együtt oda vezet, hogy a fázitérfogatcsökkenés leghamarabb a forgás által kijelölt tengely mentén megy végbe, mert itt nincsenek ezt ellensúlyozó erőhatások. Ennek eredményeképpen jönnek létre a protoplanetáris korongok. | + | Hosszú idő elteltével a disszipáció egyedüli hatásként oda vezet, hogy a rendszer beáll egy infinitezinális pontba a fázistérben. Ha más hatás is van, az bizonyos irányokban ezt ellensúlyozhatja. Példa erre a Naprendszer(-ek) kialakulása: az összesűrűsödő porfelhő kezdetben gömbszimmetrikusan húzódik össze, azonban mivel csökken a tehetetlensége, forgása (ami kicsi mindig van a fluktuációk miatt) felgyorsul a perdületmegmaradás miatt. A növekvő sűrűség miatt azonban a surlódás (elemi rugalmatlan ütközések rátája) is nő, ezért egyre erősebb disszipáció lesz jellemző. A forgás és a disszipáció együtt oda vezet, hogy a fázitérfogatcsökkenés leghamarabb a forgás által kijelölt tengely mentén megy végbe, mert itt nincsenek ezt ellensúlyozó erőhatások. Ennek eredményeképpen jönnek létre a protoplanetáris korongok. Ez a tulajdonság általánosabb érvényű: a disszipáció redukálja a fázistér elérhető dimenzióinak számát. |
== Diffúzió == | == Diffúzió == |
A lap 2011. június 12., 20:24-kori változata
Tartalomjegyzék
Dinamikai rendszerek elmélete
A dinamikai rendszerek elmélete csatolt differenciálegyenletek tulajdonságával foglalkozik, amiknek az időfejlődését néhány paraméter határozza meg. A rendszer időfejlődésének vizsgálata a paraméterek állapotterében zajlik.
Alapfogalmak
Fixpont és határciklus
Fixpontnak azt nevezzük, amikor a rendszer hosszú idő után a fázistér egy pontjában található meg. A fixpont lehet stabil (kis kitérésre visszatér), és instabil (kis kitérésre nem tér vissza). A határciklus a fázistérben egy zárt trajektória, amin a rendszer az idő előrehaladtával körbejár. Szintén lehet stabil vagy instabil.
Bifurkáció
Bifurkációról akkor beszélünk, amikor egy külső paraméter hatására a rendszer hosszú távú viselkedése kvalitatívan megváltozik (pl.: 1 fixpont → 2 fixpont, fixpont → határciklus, stb.)
Poincaré-metszet
A rendszer időfejlődését, főleg ha az d>3 dimenziós, nagyon nehéz grafikusan ábrázolni. Ezért a fázistérnek és egy síknak a metszetét vizsgáljuk. Ha egy közel periodikus pálya metszi a síkot (a fázistér egy alterét), akkor egy periódusidő múlva újra metszeni fogja, közel az előző ponthoz. Belátható, hogy egy pálya akkor periodikus, ha a Poincaré-metszetnek fixpontja.
Ljapunov-exponens
A Ljapunov-exponenssel az számszerűsíthetjük, hogy a fázistérben két közeli trajektória milyen gyorsan távolodik egymástól. Ha kezdetben távolságra voltak, akkor az időben a távolságuk szerint növekszik.
Attraktor
A fázistér vonzó halmaza, vagyis olyan halmaza, amely felé a trajektóriák közelednek. Disszipatív rendszerekben fordulnak elő, fázistérfogatuk zérus.
Determinisztikus káosz
Az egyszerű, kevés összetevőből álló rendszerek szabálytalan mozgását kaotikusnak nevezzük. Jellemzői:
- nem ismétli önmagát
- nem jelezhető előre, mert érzékeny a kezdőfeltételekre, melyeket véges pontossággal ismerünk
- a visszatérési szabály bonyolult geometriájú (pl.: hely-sebesség ábrázolásban egy komplex, de szabályos szerkezet jelenik meg)
A valós folyamatok leírásában (egyszerű rendszerekre, pl.: kettős inga) fel tudjuk írni a rendszert mozgató differenciálegyenleteket, viszont a kezdőfeltételeket csak valamekkora hibával ismerjük. Mivel a kaotikus mozgás hibaerősítő, a mozgást a rövid előrejelzési időn túl követve a bizonytalanság eléri az egész attraktor méretét. Az ilyen mozgás tehát előre jelezhetetlen,rendszerint a fázistér fraktálalakzataihoz kötött, és hosszú távú leírása egy időfüggetlen valószínűségeloszlással lehetséges.
A legismertebb példája a determinisztikus káosznak a logisztikus leképzés. Ezt nem differenciálegyenlettel írjuk le, hanem a másik lehetséges módon, leképezés formában, ami a következő: . Az x változó a [0:1] tartományon értelmezhető, az r paraméter pedig [0:4] lehet. A leképezést populációdinamikai modellekben szokták használni, ahol x a populáció hányada a teljes lehetséges populációhoz, az r pedig a szaporodási és a pusztulási ráta kombinációja. Az xn sorozat viselkedését az r paraméter határozza meg. Ha r<3, akkor 1 fixpont van, ha 3<r<3.4, akkor 2 fixpont van, stb. Hogy melyik r értéknél milyen viselkedést tapasztalunk, a bifurkációs diagramról olvashatjuk le. Még több a logisztikus leképezésről itt.
Káosz disszipatív rendszerekben
Disszipatív rendszerről akkor beszélünk, amikor a rendszer energiája súrlódás hatására folyamatosan csökken. Ha nem tudjuk a rendszerünket egy mechanikai rendszernek megfeleltetni, akkoronnan vehetjük észre a disszipációt, hogy a fázistérben a fázistérfogat csökken (nullához tart). Az egyik legegyszerűbb példa disszipatív rendszerre a súrlódásos matematikai inga:
Az egyenletet fel lehet írni két elsőrendű, csatolt differenciálegyenletbe az és az helyettesítéssel:
A fázistérfogat változását az alábbi egyenlet határozza meg:
A disszipációt tehát úgy is megfogalmazhatjuk, hogy
Hosszú idő elteltével a disszipáció egyedüli hatásként oda vezet, hogy a rendszer beáll egy infinitezinális pontba a fázistérben. Ha más hatás is van, az bizonyos irányokban ezt ellensúlyozhatja. Példa erre a Naprendszer(-ek) kialakulása: az összesűrűsödő porfelhő kezdetben gömbszimmetrikusan húzódik össze, azonban mivel csökken a tehetetlensége, forgása (ami kicsi mindig van a fluktuációk miatt) felgyorsul a perdületmegmaradás miatt. A növekvő sűrűség miatt azonban a surlódás (elemi rugalmatlan ütközések rátája) is nő, ezért egyre erősebb disszipáció lesz jellemző. A forgás és a disszipáció együtt oda vezet, hogy a fázitérfogatcsökkenés leghamarabb a forgás által kijelölt tengely mentén megy végbe, mert itt nincsenek ezt ellensúlyozó erőhatások. Ennek eredményeképpen jönnek létre a protoplanetáris korongok. Ez a tulajdonság általánosabb érvényű: a disszipáció redukálja a fázistér elérhető dimenzióinak számát.
Diffúzió
A determinisztikus diffúziót megfigyelhetjük a lökdösött rotátoron. Ez egy olyan rotátor, ami T időnként hirtelen impulzust kap (a lökés amplitúdója általában a hely periodikus függvénye, pl.: f(x) = a*sin x). A lökések amplitúdója bármilyen értéket felvehet a (-a,a) intervallumban, a sebesség változás ezért véletlen bolyongásnak fog megfelelni (, ezért ). A sebességtengely 2 hosszúságú intervallumán nagy számú pontot indítva azt tapasztaljuk, hogy azok a vn tengely mentén egyre jobban szétterjednek. A kaotikus dinamika tehát egy diffúziós folyamatot hozott létre.
A bolyongás során egy részecske koordinátája az i-edik lépésben éppen -gyel változik meg. Ha ri-k függetlennek tekinthetők, akkor az átlag elmozdulás , a négyzetes átlagos elmozdulás pedig . A függetlenség miatt igaz, hogy . A bolyongás diffúziós együtthatóját a képletből kifejezhetjük: . Behelyettesítve ri értékét: .
Mindebből tehát azt szűrhetjük le, hogy a determinisztikus eredetű mozgás elegendően hosszú idő alatt pont olyan folyamatot képes létrehozni, mint valamilyen külső zaj. Ez annak a megnyilvánulása, hogy a káosz véletlenszerű mozgást jelent, és ez jól definiált valószínűség-eloszlással jellemezhető. A diffúzió tehát arra nem érzékeny, hogy a bolyongást kiváltó hatás milyen eredetű.