„Soktest rendszerek” változatai közötti eltérés

Innen: TételWiki
(Soktestrendszerek kontinuum leírása)
23. sor: 23. sor:
 
:<math>\dot q =~~\frac{\partial \mathcal{H}}{\partial p}.</math>
 
:<math>\dot q =~~\frac{\partial \mathcal{H}}{\partial p}.</math>
  
Fontos kiemelni, hogy a Liouville-egyenlet egy 6n dimenziós egyenlet (szemben a későbbiekkel). Tömören megfogalmazva a fázistérfogat megmaradását fejezi ki a mozgás trajektóriája mentén.
+
Fontos kiemelni, hogy a Liouville-egyenlet egy 6n dimenziós egyenlet (szemben a későbbiekkel). Tömören megfogalmazva a fázistérfogat megmaradását fejezi ki a mozgás trajektóriája mentén. Speciálisan 1 klasszikus részecskére az egyenlet:
 +
 
 +
:<math>\frac{\partial f}{\partial t}+\frac{\vec{p}}{m}\cdot\nabla_\vec{r}f+\vec{F}\cdot \nabla_\vec{p} f=0.</math>
 +
 
 +
=== A Boltzmann-egyenlet ===
 +
A [http://en.wikipedia.org/wiki/Boltzmann_equation Boltzmann-egyenlet] Boltzmann-egyenlet az előzőekkel szemben az egyrészecske-eloszlásfüggvényre vonatkozó mozgásegyenletet adja meg. Alapvetően ez is a fázistérfogat megmaradására épít, amely külső erőhatás esetén ütközések nélkül:
 +
 
 +
:<math>
 +
f(\vec{r},\vec{p},t)\,d\vec{r}\,d\vec{p} - f(\vec{r}+\frac{\vec{p}}{m}\,dt,\vec{p}+\vec{F}\,dt,t+dt)\,d\vec{r}\,d\vec{p} = 0,
 +
</math>
 +
 
 +
A jobboldal az eloszlásfüggvény teljes deriváltja ha <math>d\vec{r} d \vec{p}</math> infinitezimális. Ha ütközések is vannak, azok a jobboldalra írhatóak. Ezekkel együtt a Boltzmann-egyenlet:
 +
 
 +
:<math>
 +
\frac{\partial f}{\partial t}
 +
+ \frac{\vec{p}}{m} \nabla_\vec{r} \cdot
 +
+ \vec{F} \nabla_\vec{p} \cdot
 +
= \left. \frac{\partial f}{\partial t} \right|_{\mathrm{coll}}.
 +
</math>
 +
 
 +
Azaz az ütközési tagtól eltekintve visszakaptuk a Liouville-egyenlet fenti speciális esetét. Boltzmann nagy eredménye az volt, hogy az ütközési tagra is tudott jól használható feltevést tenni az egyrészecske-eloszlásfüggvényekkel kifejezve. Ez a molekuláris káosz feltevés, amely arra épül, hogy a részecskék sebességei korrelálatlanok az ütközés előtt és után, továbbá függetlenek a helytől. Ennek a segítségével az ütközési tag:
 +
 
 +
:<math>
 +
\left. \frac{\partial f}{\partial t} \right|_{\mathrm{coll}} = \int d\Omega \int \, d\vec{p}_2 \, \sigma(\Omega) \, |\vec{p}_1 - \vec{p}_2| (f'_1 f'_2 - f_1 f_2)
 +
</math>
 +
 
 +
ahol az 1, 2 indexek az egyik és másik részecske adatait indexelik, a vesszőtlen menyiségek az ütközés előtti, a vesszősek az ütközés utániakat jelölik, <math>\Omega</math> a relatív sebességek megváltozási szöge,  <math>\sigma</math> az ütközési hatáskeresztmetszet.
 +
 
 +
 
 +
 
 +
 
  
 
== Elektromágnesesen kölcsönható soktestrendszerek ==
 
== Elektromágnesesen kölcsönható soktestrendszerek ==

A lap 2011. június 10., 17:42-kori változata

Az alábbiakban összefoglaljuk a sok részecskét tartalmazó statisztikus rendszerek leírására szolgáló egyenleteket, továbbá néhány fontos alkalmazást is megemlítünk. Ezekből az egyenleteből származtatható további eredmények pedig a Transzportfolyamatok tételben kerülnek kifejtésre.

Soktestrendszerek kontinuum leírása

Amikor nagyon sok részecskének a jellemzőit kell leírni, akkor célszerű mindent eloszlásfüggvényekkel kifejezni. Az eloszlásfüggvény felintegrálva részecskeszámot ad. Meg kell azonban különböztetni, hogy hány részecskére vonatkozik az eloszlásfüggvény. Speciálisan az egyrészecske-eloszlásfüggvény azt mondja meg, hogy mekkra valószínűséggel találunk a d^3 p d^3 r fázistérfogatban 1 részecskét (vagy N-et, a normálás konvenció kérdése), az egyszerűség kedvéért 3 dimenzióra specializálva a tárgyalást:

N(t) = \int_{-\infty}^{+\infty} f(\vec{r}, \vec{p}, t) \, d^3 \vec{r} \, d^3 \vec{p}.

Ezzel szemben az általános N részecske-eloszlásfüggvény:

N(t) = \int_{-\infty}^{+\infty} d^3 \vec{r}_1 \, d^3 \vec{p}_1 ... \int_{-\infty}^{+\infty} d^3 \vec{r}_N \, d^3 \vec{p}_N f(\vec{r}_1, \vec{p}_1, ..., \vec{r}_N, \vec{p}_N, t) \, .

A Liouville-egyenlet

Az eloszlásfüggvények megváltozásának leírásához valamilyen mozgásegyenletre van szükségünk. A legegyszerűbb és egyben legáltalánosabb ilyen egyenlet a Liouville-egyenlet, amely az N részecske-eloszlásfüggvényre vonatkozik:

\frac{d f}{dt}=
\frac{\partial f}{\partial t}
+\sum_{i=1}^n\left(\frac{\partial f}{\partial q^i}\dot{q}^i
+\frac{\partial f}{\partial p_i}\dot{p}_i\right)=0.

Itt i indexeli az n darab részecskét, q a kanonikus koordináta, p a konjugált impulzus és az időderiváltakat a szokásos módon a Hamilton operátor adja:

\dot p = -\frac{\partial \mathcal{H}}{\partial q}
\dot q =~~\frac{\partial \mathcal{H}}{\partial p}.

Fontos kiemelni, hogy a Liouville-egyenlet egy 6n dimenziós egyenlet (szemben a későbbiekkel). Tömören megfogalmazva a fázistérfogat megmaradását fejezi ki a mozgás trajektóriája mentén. Speciálisan 1 klasszikus részecskére az egyenlet:

\frac{\partial f}{\partial t}+\frac{\vec{p}}{m}\cdot\nabla_\vec{r}f+\vec{F}\cdot \nabla_\vec{p} f=0.

A Boltzmann-egyenlet

A Boltzmann-egyenlet Boltzmann-egyenlet az előzőekkel szemben az egyrészecske-eloszlásfüggvényre vonatkozó mozgásegyenletet adja meg. Alapvetően ez is a fázistérfogat megmaradására épít, amely külső erőhatás esetén ütközések nélkül:


f(\vec{r},\vec{p},t)\,d\vec{r}\,d\vec{p} - f(\vec{r}+\frac{\vec{p}}{m}\,dt,\vec{p}+\vec{F}\,dt,t+dt)\,d\vec{r}\,d\vec{p} = 0,

A jobboldal az eloszlásfüggvény teljes deriváltja ha d\vec{r} d \vec{p} infinitezimális. Ha ütközések is vannak, azok a jobboldalra írhatóak. Ezekkel együtt a Boltzmann-egyenlet:


\frac{\partial f}{\partial t}
+ \frac{\vec{p}}{m} \nabla_\vec{r} \cdot 
+ \vec{F} \nabla_\vec{p} \cdot 
= \left. \frac{\partial f}{\partial t} \right|_{\mathrm{coll}}.

Azaz az ütközési tagtól eltekintve visszakaptuk a Liouville-egyenlet fenti speciális esetét. Boltzmann nagy eredménye az volt, hogy az ütközési tagra is tudott jól használható feltevést tenni az egyrészecske-eloszlásfüggvényekkel kifejezve. Ez a molekuláris káosz feltevés, amely arra épül, hogy a részecskék sebességei korrelálatlanok az ütközés előtt és után, továbbá függetlenek a helytől. Ennek a segítségével az ütközési tag:


\left. \frac{\partial f}{\partial t} \right|_{\mathrm{coll}} = \int d\Omega \int \, d\vec{p}_2 \, \sigma(\Omega) \, |\vec{p}_1 - \vec{p}_2| (f'_1 f'_2 - f_1 f_2)

ahol az 1, 2 indexek az egyik és másik részecske adatait indexelik, a vesszőtlen menyiségek az ütközés előtti, a vesszősek az ütközés utániakat jelölik, \Omega a relatív sebességek megváltozási szöge, \sigma az ütközési hatáskeresztmetszet.



Elektromágnesesen kölcsönható soktestrendszerek

Molekula dinamika

Hartree-Fock módszer

Vlasov/Boltzmann-egyenlet

Vlasov-Uhling-Uhlenberg-egyenlet

Gravitációsan kölcsönható soktestrendszerek

Galaxisképződés

MSc záróvizsga tételek
Tételek Soktest rendszerek | Transzportfolyamatok | Véletlen gráfok generálása, tulajdonságai | Elsőrendű és folytonos fázisátalakulások | Válasz- és korrelációs függvények, fluktuáció-disszipáció tétel | Sztochasztikus folyamatok | A statisztikus fizikai szimulációk alapjai és a Monte Carlo módszer | Dinamikai rendszerek, kaotikus viselkedés | Adatelemzés: lineáris és nem lineáris regresszió egy modellen bemutatva | Adatelemzés: bootstrap modellek | TCP hálózat működése | Adatelemzés: ARCH, GARCH folyamatok | Numerikus módszerek | Vizualizációs módszerek