„Véletlen gráfok generálása, tulajdonságai” változatai közötti eltérés
(→Alapfogalmak) |
(→Alapfogalmak) |
||
14. sor: | 14. sor: | ||
<math>c_i = \frac{2e_i}{k_i(k_i-1)}</math>, ahol <math>e_i</math> az i-edik csúcs szomszédai közti élek száma. Átlagos klaszterezettség: <math><c> = \frac{1}{N}\sum(c_i)</math> | <math>c_i = \frac{2e_i}{k_i(k_i-1)}</math>, ahol <math>e_i</math> az i-edik csúcs szomszédai közti élek száma. Átlagos klaszterezettség: <math><c> = \frac{1}{N}\sum(c_i)</math> | ||
− | Szemléletes jelentés: Ha <math>c_i = 0</math>, akkor " | + | Szemléletes jelentés: Ha <math>c_i = 0</math>, akkor "csillag" - ha <math>c_i = 1</math>, akkor "klikk" |
[[Kép:csillag-klikk.jpg|center|thumb|csillag és klikk]] | [[Kép:csillag-klikk.jpg|center|thumb|csillag és klikk]] | ||
* Távolság: (<math>l_{ij}</math>) az a minimális lépésszám i és j csúcsok között, ami alatt el lehet jutni i-ből j-be az éleket követve. (irányítatlan gráfon <math>l_{ij} = l_{ji}</math>, irányított gráfon ez nem feltétlen teljesül.) | * Távolság: (<math>l_{ij}</math>) az a minimális lépésszám i és j csúcsok között, ami alatt el lehet jutni i-ből j-be az éleket követve. (irányítatlan gráfon <math>l_{ij} = l_{ji}</math>, irányított gráfon ez nem feltétlen teljesül.) |
A lap 2011. június 13., 14:16-kori változata
Rengeteg mindent fel lehet írni gráf alakban: internetes honlapok, szociális hálók, metabolikus folyamatok, szerzőségi hálók, tápláléklánc, körfolyamatok a fizikában és a biológiában, linux kernel stb.
Tartalomjegyzék
Alapfogalmak
- Egy gráf csúcsokból és élekből áll. A gráf lehet:
- Egyszerű gráf (két pont között csak 1 él, nincs hurok egy csúcsra); Multi gráf (két pont között lehet több él, nincs hurok egy csúcsra); Pszeudo gráf (két pont között lehet több él és lehet egy csúcson hurok)
- Irányított/Irányítatlan
- Súlyozott/Súlyozatlan
- Címkézett gráf: csúcs- és/vagy él-címkézett (élek/csúcsok egyéni azonosítóval rendelkeznek)
- Biparit gráf: két fajta csúcs van és élek csak a különböző fajtájú csúcsok közt vannak (pl.: filmszínészek hálózata)
- Gráf reprezentációja: mutatókkal, él-listákkal, vagy összekötöttségi mátrixokkal.
- Csúcs fokszáma: a csúcs kapcsolatainak száma (irányított gráfnál lehet beszélni bejövő és kimenő fokszámról).
- Fokszám-eloszlás: egy gráf teljes fokszám-gyakoriság diagramja. (ahol a k fokszámú csúcsok száma, N pedig a csúcsok száma
- Csúcs klaszterezettségi együtthatója: (csoporterősségi együttható)
, ahol az i-edik csúcs szomszédai közti élek száma. Átlagos klaszterezettség:
Szemléletes jelentés: Ha , akkor "csillag" - ha , akkor "klikk"
- Távolság: () az a minimális lépésszám i és j csúcsok között, ami alatt el lehet jutni i-ből j-be az éleket követve. (irányítatlan gráfon , irányított gráfon ez nem feltétlen teljesül.)
Kisvilág tulajdonság
Legyen a gráf összes csúcsának száma N. Két tetszőleges csúcs közötti legrövidebb út: legkevesebb csúcs érintésével. Legrövidebb utak átlagos hossza: l.
Kisvilág tulajdonság:
Erdős-Rényi gráf
- N csúcsból áll
- Minden két csúcs között p valószínűséggel él
Tulajdonságok
- Csúcsok növelésével exponenciálisan nő a kapcsolatszám
- Kisvilág tulajdonság, ha összefüggő. Szinte mindig összefüggő, mivel az óriáskomponens gyorsan kialakul, . Az egyes komponenseken belül is kisvilág tulajdonság
- Klaszterezettsége: , ahol z az átlagos fokszám, N pedig az összes csúcs száma
Watts-Strogratz gráf
A "kisvilág" modell, tetszőleges D dimenzióban megvalósítható.
- N csúcs, kiinduláskor rendezett rács, szabályos k-szomszédság
- Két módszer: "átdrótozás" (rewiring), vagy "levágások" (shortcuts). Előbbinél a meglévő éleket helyezzük át, utóbbinál új éleket vezetünk be két csúcs között - mindkét esetben p valószínűséggel tesszük ezt minden csúcspárra
- Az átlagos legrövidebb út hamarabb csökken, mint a klaszterezettség, egyszerre kisvilág és klaszterezett
Barabási-Albert gráf
Preferenciális csatolás (preferential attachment) modell.
- M db kezdőcsúcs tetszőlegesen összekötve
- Minden lépésben egy új csúcs, E db éllel
- Véletlenszerű, hogy melyik csúcshoz csatlakoznak az új élek, de a meglévő csúcsok fokszáma alapján preferencia: , ahol az n-edik csúcs fokszáma
Tulajdonságai
- A fokszámeloszlás hatványfüggvényt követ
- Kisvilág
- NEM klaszterezett
Robosztusság
Más néven ellenállóság véletlen hibákkal, vagy támadásokkal szemben.
Miért fontos? Robosztus számítógép-hálózatok, fajok védelme, járvány-védelem, információ-terjedés elleni "védelem" stb.
Klaszterezettség
A klaszterezettségi együttható azt mondja meg, hogy mekkora a valószínűsége annak, hogy egy adott csúcs szomszédai egymással is szomszédok.