Dinamikai rendszerek, kaotikus viselkedés

Innen: TételWiki
A lap korábbi változatát látod, amilyen Adrian (vitalap | szerkesztései) 2011. június 10., 16:08-kor történt szerkesztése után volt.

Dinamikai rendszerek elmélete

A dinamikai rendszerek elmélete csatolt differenciálegyenletek tulajdonságával foglalkozik, amiknek az időfejlődését néhány paraméter határozza meg. A rendszer időfejlődésének vizsgálata a paraméterek állapotterében zajlik.

Alapfogalmak

Fixpont és határciklus

Fixpontnak azt nevezzük, amikor a rendszer hosszú idő után a fázistér egy pontjában található meg. A fixpont lehet stabil (kis kitérésre visszatér), és instabil (kis kitérésre nem tér vissza). A határciklus a fázistérben egy zárt trajektória, amin a rendszer az idő előrehaladtával körbejár. Szintén lehet stabil vagy instabil.

Bifurkáció

Bifurkációról akkor beszélünk, amikor egy külső paraméter hatására a rendszer hosszú távú viselkedése kvalitatívan megváltozik (pl.: 1 fixpont → 2 fixpont, fixpont → határciklus, stb.)

Poincaré-metszet

A rendszer időfejlődését, főleg ha az d>3 dimenziós, nagyon nehéz grafikusan ábrázolni. Ezért a fázistérnek és egy síknak a metszetét vizsgáljuk. Ha egy közel periodikus pálya metszi a síkot (a fázistér egy alterét), akkor egy periódusidő múlva újra metszeni fogja, közel az előző ponthoz. Belátható, hogy egy pálya akkor periodikus, ha a Poincaré-metszetnek fixpontja.

Ljapunov-exponens

A Ljapunov-exponenssel az számszerűsíthetjük, hogy a fázistérben két közeli trajektória milyen gyorsan távolodik egymástól. Ha kezdetben \delta Z_0 távolságra voltak, akkor az időben a távolságuk |\delta Z_0(t)| \approx e^{\lambda t}|\delta Z_0| szerint növekszik.

Attraktor

A fázistér vonzó halmaza, vagyis olyan halmaza, amely felé a trajektóriák közelednek. Disszipatív rendszerekben fordulnak elő, fázistérfogatuk zérus.

Determinisztikus káosz

Az egyszerű, kevés összetevőből álló rendszerek szabálytalan mozgását kaotikusnak nevezzük. Jellemzői:

  • nem ismétli önmagát
  • nem jelezhető előre, mert érzékeny a kezdőfeltételekre, melyeket véges pontossággal ismerünk
  • a visszatérési szabály bonyolult geometriájú (pl.: hely-sebesség ábrázolásban egy komplex, de szabályos szerkezet jelenik meg)

A valós folyamatok leírásában (egyszerű rendszerekre, pl.: kettős inga) fel tudjuk írni a rendszert mozgató differenciálegyenleteket, viszont a kezdőfeltételeket csak valamekkora hibával ismerjük. Mivel a kaotikus mozgás hibaerősítő, a mozgást a rövid előrejelzési időn túl követve a bizonytalanság eléri az egész attraktor méretét. Az ilyen mozgás tehát előre jelezhetetlen,rendszerint a fázistér fraktálalakzataihoz kötött, és hosszú távú leírása egy időfüggetlen valószínűségeloszlással lehetséges.

A legismertebb példája a determinisztikus káosznak a logisztikus leképzés. Ezt nem differenciálegyenlettel írjuk le, hanem a másik lehetséges módon, leképezés formában, ami a következő: x_{n+1} = r\,x_n(1-x_n). Az x változó a [0:1] tartományon értelmezhető, az r paraméter pedig [0:4] lehet. A leképezést populációdinamikai modellekben szokták használni, ahol x a populáció hányada a teljes lehetséges populációhoz, az r pedig a szaporodási és a pusztulási ráta kombinációja.

Káosz disszipatív rendszerekben

Diffúzió

Ismét sokadszorra:)

Zaj dominált rendszerek

MSc záróvizsga tételek
Tételek Soktest rendszerek | Transzportfolyamatok | Véletlen gráfok generálása, tulajdonságai | Elsőrendű és folytonos fázisátalakulások | Válasz- és korrelációs függvények, fluktuáció-disszipáció tétel | Sztochasztikus folyamatok | A statisztikus fizikai szimulációk alapjai és a Monte Carlo módszer | Dinamikai rendszerek, kaotikus viselkedés | Adatelemzés: lineáris és nem lineáris regresszió egy modellen bemutatva | Adatelemzés: bootstrap modellek | TCP hálózat működése | Adatelemzés: ARCH, GARCH folyamatok | Numerikus módszerek | Vizualizációs módszerek