Válasz- és korrelációs függvények, fluktuáció-disszipáció tétel
Ebbe a tételbe sok minden a Sasi-féle Nemegyensúlyi Statisztikus Fizika órából fog bekerülni.
Tartalomjegyzék
Lineáris válasz-elmélet
Kis külső perturbáció hatására a legkülönbözőbb fizikai rendszerek által produkált reakciók is jól tárgyalhatók lineáris közelítésben. Ide értendőek nem csak a korábban tárgyalt transzport jelenségek, de maguk a mérések is: például mechanikai vagy termodinamikai változásnak teszünk ki egy rendszert egy időpontban és megmérjük a különböző jellemzőit egy időpontban. A rendszert leíró fizikai jellemzők itt is első rendben lineáris kapcsolatba hozhatóak a perturbációval.
A tárgyaláshoz legyen az izolált (nem-perturbált) rendszer Hamiltonja és a kölcsönhatást leíró Hamilton , valamint a teljes rendszert jellemző Hamilton ezek összege. Tételezzük fel a külső perturbációról nem csak azt, hogy gyenge, de azt is, hogy adiabatikusan kapcsoljuk be, azaz nagyon lassan, kvázi-stacionárius állapotokon keresztül.
A rendszert jellemezzük a sűrűségoperátorral, -val. Egy mennyiség sokaságátlaga időpontban:
ahol az időfejlesztés unitér operátora, amely leírja a rendszert jellemző mennyiségek időfejlődését -ból -be. A kölcsönhatási képben minden operátor (így is) a szabad Hamilton szerint fejlődik időben:
Ennek a megoldása -ra egy exponenciális kifejezést ad, amit első rendig sorfejtve kapjuk, hogy:
Ezt beírva az X mennyiség átlagának képletébe, és kihasználva a Tr ciklikusságát, valamint, hogy kezdetben a rendszer termikus egyensúlyban volt: , továbbá a külső perturbációja legyen alakú, ahol a perturbáló mennyiség operátora, pedig a perturbáció amplitudója. Mindezekkel kapjuk:
Mivel a Tr alatti ciklikus permutációs szimmetria van érvényben, az időfüggések átcsoportosíthatóak, ezért a []-es mennyiség csak az időkülönbéstől függ. Ezekkel kapjuk a Kubo-formulát:
ahol:
a szuszceptibilitás, vagy lineáris válasz függvény.