Adatelemzés: bootstrap modellek

Innen: TételWiki
A lap korábbi változatát látod, amilyen Adrian (vitalap | szerkesztései) 2011. június 11., 20:04-kor történt szerkesztése után volt.

Egy X valószínűségi változó eloszlását különféle paraméterekkel jellemezhetjük: várható érték, szórás, ferdeség, stb. Ezeket a paramétereket egy n elemű minta alapján statisztikai függvények segítségével becsüljük. Pl.: a várható értéket a mintaátlaggal becsüljük, az empirikus és a korrigált empirikus szórás a szórás becslései. A becslésektől elvárjuk, hogy (legalább aszimptotikusan) torzítatlanok legyenek, valamint a becslés standard hibája a mintaszám növelésével nullához tartson. Ha kicsi a mintaszámunk, akkor nemcsak, hogy pontatlan lesz a becslésünk, de a pontosság jellemzőit sem tudjuk megbecsülni (pl.: konfidencia-intervallum) a klasszikus statisztika eszközeivel.

Mikor nevezhető kicsinek a mintaszám? Akkor, ha a becslés pontossági jellemzőinek (torzítás, standard hiba, konfidencia-intervallum) az n elemű mintából történő becslésekor indokolatlan a határeloszlásra való áttérés (a "klasszikus" képletek nem alkalmazhatók). A probléma megoldására találták ki az újra mintavételező módzsereket

Bootstrap módszer

Legyen X egy valószínűségi változó, x = (x_1, x_2, ..., x_n) pedig egy n elemű minta X-re, s(x) pedig X valamely paraméterének becslése. A bootstrap-szimuláció során visszatevéssel egy új, szintén n elemű mintát veszünk: x^* = (x_1^*, x_2^*, ..., x_n^*). Pl.: n=5-re: x^* = (x_2, x_4, x_1, x_2, x_1)\,. Az x*-ra is alkalmazzuk s(x)-et, így s(x*)-ot kapjuk. Az eljárást N-szer megismételjük, így kapjuk s(x)-ek egy sorozatát: s(x_1^*), s(x_2^*), ... s(x_N^*). Ha N elég nagy, akkor az s(x) becslés bootstrap-utánzatainak empirikus eloszlása jól modellezi az adott statisztika elméleti eloszlását.

Jackknife módszer

Cross-validation

MSc záróvizsga tételek
Tételek Soktest rendszerek | Transzportfolyamatok | Véletlen gráfok generálása, tulajdonságai | Elsőrendű és folytonos fázisátalakulások | Válasz- és korrelációs függvények, fluktuáció-disszipáció tétel | Sztochasztikus folyamatok | A statisztikus fizikai szimulációk alapjai és a Monte Carlo módszer | Dinamikai rendszerek, kaotikus viselkedés | Adatelemzés: lineáris és nem lineáris regresszió egy modellen bemutatva | Adatelemzés: bootstrap modellek | TCP hálózat működése | Adatelemzés: ARCH, GARCH folyamatok | Numerikus módszerek | Vizualizációs módszerek