Adatelemzés: bootstrap modellek

Innen: TételWiki
A lap korábbi változatát látod, amilyen Adrian (vitalap | szerkesztései) 2011. június 12., 15:22-kor történt szerkesztése után volt. (Cross-validation)

Egy X valószínűségi változó eloszlását különféle paraméterekkel jellemezhetjük: várható érték, szórás, ferdeség, stb. Ezeket a paramétereket egy n elemű minta alapján statisztikai függvények segítségével becsüljük. Pl.: a várható értéket a mintaátlaggal becsüljük, az empirikus és a korrigált empirikus szórás a szórás becslései. A becslésektől elvárjuk, hogy (legalább aszimptotikusan) torzítatlanok legyenek, valamint a becslés standard hibája a mintaszám növelésével nullához tartson. Ha kicsi a mintaszámunk, akkor nemcsak, hogy pontatlan lesz a becslésünk, de a pontosság jellemzőit sem tudjuk megbecsülni (pl.: konfidencia-intervallum) a klasszikus statisztika eszközeivel.

Mikor nevezhető kicsinek a mintaszám? Akkor, ha a becslés pontossági jellemzőinek (torzítás, standard hiba, konfidencia-intervallum) az n elemű mintából történő becslésekor indokolatlan a határeloszlásra való áttérés (a "klasszikus" képletek nem alkalmazhatók). A probléma megoldására találták ki az újra mintavételező módzsereket

Bootstrap módszer

Legyen X egy valószínűségi változó, x = (x_1, x_2, ..., x_n) pedig egy n elemű minta X-re, s(x) pedig X valamely paraméterének becslése. A bootstrap-szimuláció során visszatevéssel egy új, szintén n elemű mintát veszünk: x^* = (x_1^*, x_2^*, ..., x_n^*). Pl.: n=5-re: x^* = (x_2, x_4, x_1, x_2, x_1)\,. Az x*-ra is alkalmazzuk s(x)-et, így s(x*)-ot kapjuk. Az eljárást N-szer megismételjük, így kapjuk s(x)-ek egy sorozatát: s(x_1^*), s(x_2^*), ... s(x_N^*). Ha N elég nagy, akkor az s(x) becslés bootstrap-utánzatainak empirikus eloszlása jól modellezi az adott statisztika elméleti eloszlását.

Jackknife módszer

Ha van egy n elemű mintánk, annak az átlagát \bar{x} jelöli. Ugyanakkor kiszámolhatjuk az átlagot akkor is, ha a j-edik elemet kivágjuk (erre utal a módszer elnevezése is):

\bar{x}_{-j} = \frac{1}{n-1} \sum_{i \neq j}^n x_i

Vegyük észre, hogy ha ismert \bar{x} \text{és} \bar{x}_{-j} is, akkor ki tudjuk számolni xj-t: x_j = n \bar{x} - (n-1) \bar{x}_{-j}

Tegyük fel, hogy az eloszlás egy \theta paraméterét akarjuk meghatározni. n pontra ennek a becslése:

\hat{\theta} = \phi (x_1, x_2, ..., x_n)

Az előző ötletet felhasználva \theta egy részleges becslését kapjuk, ha kivesszük a j-edik elemet:

\hat{\theta}_j = \phi (x_1, x_2, ..., x_{j-1}, x_{j+1}, ... x_n)

Szintén az előző ötlet alapján kiszámolhatjuk a j-edik pszeudoértéket:

\hat{\theta^*}_j = n \hat{\theta} - (n-1) \hat{\theta}_j

A fentiek alapján a \theta jackknife becslése:

\hat{\theta^*} = \frac{1}{n} \sum_{i=1}^n \hat{\theta^*}_i

A \theta paraméter varianciáját a pszeudoértékekből becsülhetjük:

Var(\hat{\theta^*}) = \frac{\sum_{j=1}^n (\hat{\theta^*}_j - \hat{\theta^*} )^2}{n(n-1)}

Cross-validation

A cross-validation egy olyan statisztikai módszer, melyben a rendelkezésre álló adatokat két csoportba osztjuk: egy tanító halmazra, amelyre az analízist végezzük, és egy teszt halmazra, amin kiértékeljük az analízis eredményét. A leginkább használt típusa a k-fold cross-validation, amiben az adatokat k darab, közel egyforma méretű csoportba osztjuk. A módszer k darab iterációt használ, és minden iterációban egy másik csoportot választunk tanító halmaznak, a többi pedig a teszt halmaz lesz. A leggyakoribb a k=10 eset.

A cross-validation-t kétféle célból használhatjuk:

  1. Megbecsüljük egy modell hatékonyságát a rendelkezésre álló adatokon
  2. Összehasonlítsunk két vagy több modellt, és eldöntsük, melyik írja le jobban az adatainkat

A módszer menete a következő (az i-edik iterációban, i = 1, ..., k):

  1. Az i-edik csoportra illesztjük a modellt (a modell lehet lineáris, polinom, stb.)
  2. A modellt alkalmazzuk a teszt halmazra, és kiszámítjuk az eltérést a modelltől (négyzetes hiba)
  3. i-t léptetjük

Két modell összehasonlításához az így kapott négyzetes hibákat kell összehasonlítani, amelyikre kisebb, az jobban leírja az adatokat.

MSc záróvizsga tételek
Tételek Soktest rendszerek | Transzportfolyamatok | Véletlen gráfok generálása, tulajdonságai | Elsőrendű és folytonos fázisátalakulások | Válasz- és korrelációs függvények, fluktuáció-disszipáció tétel | Sztochasztikus folyamatok | A statisztikus fizikai szimulációk alapjai és a Monte Carlo módszer | Dinamikai rendszerek, kaotikus viselkedés | Adatelemzés: lineáris és nem lineáris regresszió egy modellen bemutatva | Adatelemzés: bootstrap modellek | TCP hálózat működése | Adatelemzés: ARCH, GARCH folyamatok | Numerikus módszerek | Vizualizációs módszerek