Transzportfolyamatok '12
Az előző tételben bemutatott kinetikus egyenletek alapjául szolgáló eloszlásfüggvényekkel fejezhetőek ki a különböző makroszkopikusan is mérhető mennyiségek, illetve az ezek közötti kapcsolatok. Ezekről, illetve néhány egyszerű alkalmazásról lesz szó itt.
Tartalomjegyzék
A Boltzmann-típusú egyenletek momentumai
Annak analógiájára, hogy a sűrűségfüggvény integrálja a részecskeszámot adja, számos más mennyiség is előállítható belőle. Például tetszőleges
mennyiség áramsűrűsége:
Ezzel könnyen felírható az elektromos töltés árama, vagy a hőáram (a Fermi-szint feletti energia árama):
Az átlagenergiasűrűséget már a sebesség második hatványával tudjuk kifejezni:
Látható, hogy a kifejezések integrandusában az
faktor a közös, ez alapján teljesen jogos a momentumokról beszélni, hiszen a sebesség egyre magasabb hatványai jelennek meg. Külön ki kell emelni, hogy mi a helyzet az ütközési tagok momentumatival. Általában plazma leírásnál felteszik, hogy ezeknek a momemtumai nullák, azaz nincs részecskeszám változás, nincs összenergia, illetve összimpulzus változás stb. Nyilván ezek csak bizonyos folyamatok esetében igazak, nem általános érvényességű igazságok (pl. ionizáció v rekombináció esetén változik a részecskeszám stb.), de mindig tükrözik, hogy az adott rendszerben milyen makroszkopikus megmaradási tételek igazak.
Transzport koefficiensek
A termodinamikai rendszert fizikai mennyiségek jellemzik. Ha egy ilyen mennyiségnek a lokális sűrűsége megváltozik, akkor ahhoz tartozik egy áram, ami az adott mennyiséget szállítja, ezeket a folyamatokat nevezzük transzport folyamatoknak. Ha az áram, illetve az áramot hajtó hatás nem túl nagy, akkor tipikusan jó a lineáris közelítés. Ekkor a lineáris együtthatót transzport koefficiensnek nevezzük. Néhány ilyen mennyiség például a hozzájuk tartozó áramokkal: Diffúziós-együttható (tömeg áram), viszkozitás (impulzus áram), hővezetési-együttható (energia áram), elektromos-vezetési együttható (az ellenállás reciproka, elektromos áram). Ezek kifejezhetőek a Boltzmann-egyenletekből megfelelő közelítések árán.
Példaképpen, ha csak az elektromos és hővezetési effektusokra szorítkozunk, akkor első közelítésben a következő egyenletek vezethetőek le:
ahol
és
a diadikus szorzatot jelöli,
pedig az ütközési tag relaxációs idejét jelenti. Az L tenzor szimmetrikus az Onsager-relációk miatt. Az Onsager-relációk szerint ha két termodinamikai erő hajtani tudja egymás áramait, akkor az ezekhez tartozó transzportkoefficiensek megegyeznek. Példaként ha egy folyadékot a hőmérséklet, nyomás és sűrűség jellemez, akkor a hőmérséklet különbség hőáramot, a nyomáskülönbség anyagáramot hajt. Ha egyszerre van jelen hőmérsékletkülönbség és nyomáskülönbség akkor ezek is hajthatják a másik áramát, de az Onsager-relációk értelmében az egységnyi nyomáskülönbségre jutó hőáram és az egységnyi hőmérsékletkülönbség által hajtott sűrűségáram azonos. A tétel a mikroszkopikus rendszerek időtükrözési invarianciájából következik.
Ezek után a lineáris transzport koefficiensek tenzorai már egyszerűen felírhatóak:
azaz a vezetőképesség tenzora, ha nincs hőmérséklet gradiens.
a hővezetés tenzora, ha nincs elektromos áram.
a termoelektromos együttható, ha nincs elektromos áram.
A magasabb rendű és kereszteffektusok hasonlóan, csak bonyolultabb közelítések után számolhatóak, néhány példa: Peltier-, Thomson-, Seebeck együtthatók, Hall-tenzor stb.
Ezek az együtthatók egyébként közvetlenül is számolhatóak a mikroszkópikus modellekből, erről a Green–Kubo-összefügések adnak számot (l. korrelációs-függvények).
Az elektromos vezetés Drude-modellje
Az elektromos vezetés jelenségét úgy tekintjük, hogy az elektronok az elektromos tér hatására gyorsulnak, azonban a vezető helyezkötött atomtörzseinek ütközve energiát veszítenek. Ez igen hamar makroszkópikus egyensúlyhoz vezet, ha a tér nem változik. Ezek a feltevések az alapjai a Drude-modellnek, amelynek eredménye az elektronokra felírható mozgásegyenlet:
amelynek stacionárius megoldása:
Itt
az ütközések között eltellő jellemző relaxációs idő, v a drift sebesség. A v-re rendezett eredményt a töltéssel (e) és az elektronsűrűséggel (n) beszorozva megkaphatjuk az Ohm-törvényt:
azaz az elektromros áramsűrűség egyenesen arányos a térerősséggel, az arányossági tényező a fajlagos ellenállás reciproka, azaz a fajlagos vezetőképesség. A Drude-moell jó leírást ad több effektusra, azonban például az áram hőhatását túlbecsli. Kevés jó modell van az elektronok ütközésének leírására, ez a terület ma is aktív kutatás tárgya.
Diffúzió - alternatív levezetés
Az alábbiakban az erőmentes diffúzió egy levezetését adjuk. Ez felfogható a Fokker-Planck egyenlet egy másik levezetéseként is. Tekintsünk erőmentes rendszert, ekkor
, továbbá legyen jó közelítéssel homogén a közegünk. Úgy kell elképzelni, hogy egy sok kis részecséből álló egyensúlyban levő rendszerbe beteszünk kevés számú nagy tömegű részecskét. Ekkor a nagyok egymás közötti ütközéseit elhanyagolhatjuk, a kicsikkel való ütközésben viszont kevéssé változik meg az impulzusuk. Eredményként minden külcsönhatást az ütközési tagba írhatunk. Az előző feltételek miatt a Boltzmann-egyenletből csak az időderivált marad meg a baloldalon, így:
A jobboldalra tegyük fel a következő Master-egyenletet, amiben a
átmeneti valószínűség jellemi az ütközési folyamatban a
impulzusról
-ra történő változás egységnyi időre jutó rátáját. Ekkor:
Az, hogy a nagy részecske impulzusa csak kicsit áltozik meg a kisebbekel való ütközésben úgy jelenik meg, hogy
függvény gyorsan csökken
-ban, ezért
-t kicsinek vehetjük, és sorfejthetünk:
Ekkor a kinetikus egyenletünk a következő alakba írható, amit Fokker-Planck egyenletnek neveznek::
ahol:
A Fokker-Planck-egyelet jobboldalára tekinthetünk úgy, mint egy divergenciára, ami ekkor a részecskeszám megmaradását fejezi ki. Az ehhez tartozó megmaradó áram (Noeter-tétel!) a részecskeszám-áramsűrűség:
A jobboldal első két tagjára bevezethetjük a
jelölést. Egyensúlyban az áram nulla, és ha azt is kihasználjuk, hogy ekkor
, ahol
a nehéz részecske tömege,
pedig a háttér kis részecskék hőmérséklete, akkor
és
nem függetlenek:
Ezzel a mozgásegyenlet alakja:
Ha még azt a közelítést is alkalmazzuk, hogy a nehéz részecskék visszalökődése elhanyagolható, akkor
impulzusfüggetlen lesz, és egyetlen skalárral (
) reprezentálható:
Az 1/3 faktor onnan jött, hogy összegeztünk az indexekre és
. Így a mozgásegyenlet:
Innen látszik, hogy a második deriváltas tag együtthatója
, tehát ez felel meg a diffúziós együtthatónak.
A diffúzió Langevin modellje
A langevin modellben egy
tömegű részecskét egy véletlenszerű erő lökdös, miközben surlódás is van a rendszerben. A megfelelő sztochasztikus differenciál-egyenlet:
Ennek a formális megoldása
kezdősebesség esetén:
Ez nyilván nem érdekes fizikailag, sokkal inkább a sokaságátlag: ekkor a zaj eltűnik (attól zaj, hogy az átlaga zérus), és csak az exponenciálisan lecsengő kezdősebesség marad. A másik ami érdekes az a sebesség négyzetének átlaga:
ahol a vegyes tag a fenti átlag=0 feltétel miatt tűnt el. A zaj korrelációja az integrál alatt dirac delta, ezért egy integrálás elvégezhető, marad a zaj amplitudója:
, ezért végül:
Kellően hosszú idő után, már csak a második tag marad meg. Ahhoz, hogy a diffúziós együtthatót levezethessük, az elmozdulás várhatóértékét kell felírnunk. Ez némi trükkel magából a Langevin-egyenletből megkapható (megszorozzuk x-el, és vesszük az egész egyenlet várhatóértékét. Eredményül azt kapjuk, hogy:
Kellően hosszú idő után a harmadik tag 0-hoz cseng le, a 2. pedig elhanyagolható az első mellett, ezért a diffúziós-együttható, ami definíció szerint 2t szorzófaktora:
Általánosított diffúzió
Ismert, hogy a rácson bolyongás problémája, ahol minden
lépésben egyet lépünk valamelyik véletlenszerűen kiválasztott
hosszú él mentén a kontinuum limeszben diffúziós folyamattal ekvivalens: példaként egydimenziós rácson a bolyongást a következő master-egyenlet írja le:
azaz annak a valószínűsége, hogy a részecskét az
-edik időpillanatban az
helyen találjuk azoknak a valószínűségeknek az összege, hogy előtte valamelyik szomszédos rácsponton volt. A lépések helyére differenciákat írva:
Elvégezve az infinitezimális limeszt, miközben
-t konstanson tartjuk kapjuk, hogy:
azaz a diffúziós egyenletet. Ez a bolyongásos megfogalmazás egyszerű általánosítási lehetőséget kínál:
Engedjük meg, hogy az időlépés is változhasson, legyen az eloszlása:
Engedjük meg, hogy az távolságlépés is változhasson, legyen az eloszlása:
Amíg
és
nem változik semmi, mert a várakozási idő átlaga is véges és a várható pozíció szórása is véges, ezért a centrális határeloszlás tétel következtében a gauss-os diffúziót kapjuk vissza. Ezeken kívül viszont változatos más viselkedéseket láthatunk:
- Lévi-repülés:
,
: 
- szubdiffúzió:
,
: 
- ambvivalens folyamat:
,
: 
Ilyen jellegű folyamatok sok helyen előfordulnak, például Lévi-repülés jellemzi az albatroszok repülését, míg az emberi utazási szokásokat egy
típusú ambvivalens folyamat írja le.













![\frac{\partial f}{\partial t} = \frac{ \partial}{\partial p_{\alpha}} \left( A_{\alpha}f + \frac{ \partial}{\partial p_{\beta}} [\mathrm{B}_{\alpha\beta} f]\right)](/images/math/7/2/1/72113ff18cccf92d1abfc6ef95422bae.png)











![\langle x^2(t) \rangle = \langle[ \gamma t - 1 + e^{-\gamma t} \rangle] \frac{A}{\gamma^3 m^2}](/images/math/9/b/8/9b822463e8f399b0b4aa3980cde6da60.png)



